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SUMMARY 

 At its core, this thesis addresses the fundamental question of how to quantify the 

structure of packed semi-flexible fibers in solid materials. This is accomplished through 

the introduction of an open source software package, GTFiber, for the automated extraction 

and analysis of fibers from images of poly(3-hexylthiophene) (P3HT) nanofibers. 

P3HT is one of many conjugated polymers: polymers that possess (a) 

semiconducting properties, making them candidates for use in electronic devices, and (b) 

solubility in organic solvents, making them solution processable (i.e. printable from ink). 

P3HT crystallizes into nanofibers that enhance the charge carrier mobility of thin film 

transistors through remarkably complex process-structure-property relationships. To 

understand and control mobility, these relationships must be quantified and modeled, 

which necessarily proceeds through the quantification of the long-range fibrillar structure. 

First and foremost, this thesis demonstrates a rigorous protocol for the analysis of 

P3HT nanofibers from Atomic Force Microscopy images. Using this protocol, the 

relationships between fiber crystallization, thin film deposition, structure, and charge 

transport are elucidated, and a correlation is demonstrated between fiber alignment and 

mobility. Additionally, processing methods are analyzed in terms of their aligning 

mechanisms, revealing that inter-fiber connectivity, fiber length, and depositional shear 

forces play crucial, interrelated roles in alignment and charge transport. Finally, the future 

of image analysis in materials science is explored through a large image database using 

modern computer vision techniques, demonstrating a new paradigm for the discovery and 

analysis of microstructural data.
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Chapter 1. Introduction 

1.1 Solution-processed Organic Electronics 

Conjugated polymers are expected to give rise to a new ecosystem of large-area 

electronics manufacturing based on solution-processable semiconducting inks. 

Semiconductors are the enabling material behind transistors, which have delivered 

unbelievable technological advances since their development by Bell labs in 1947. 

Progressively smaller circuits with exponentially higher transistor densities have driven the 

production of mainframe computers, personal computers, laptops, smartphones, and now 

smart watches. Behind these advancements is the microfabrication industry, rooted in the 

processing of crystalline silicon. However, small, fragile wafers of crystalline silicon must 

be handled in a cleanroom environment and processed at high temperatures, precluding the 

application of crystalline silicon to devices requiring large-area deposition and high-

throughput manufacturing. 

1.1.1 Applications 

In the late 1980s, the semiconducting properties of soluble polyalkylthiophenes were 

first reported,1,2 suggesting that semiconducting polymers could be dissolved in solutions 

that could be coated over large areas, enabling the production of so-called 

“macroelectronics.” This led to significant interest in roll-to-roll processing, a thin film 

deposition technique that would allow electronic devices to be printed like newspapers, as 

illustrated in Figure 1.3,4 In the ideal case, the substrate, electrodes, semiconductor, and 
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encapsulation materials could all be printable, transparent, and flexible, opening the door 

to a wide variety of potential applications. These include, but are not limited to: flexible 

solar cells;5,6 large-area and flexible displays, including e-papers,7 active matrix liquid 

crystal (LCD) and organic light emitting diode (OLED) displays;8–11 radio-frequency 

identification (RFID) tags;12,13 sensors for biomedical applications such as electronic 

skins;14,15 and devices for control and sensing in soft robotics.16,17 

 

Figure 1 – Roll-to-roll processed organic electronic devices.i 

1.1.2  Charge Carrier Mobility in the Organic Field Effect Transistor 

The fundamental building block underlying many of these futuristic technologies 

is the organic field effect transistor (OFET), illustrated in Figure 2. They are present in 

control circuits for display pixels, logic circuits in RFID tags, and can function as sensors, 

as well.18 An OFET is essentially a switch with “on” and “off” states. Current flows from 

the source to the drain through the semiconducting channel. Here, we consider a p-type 

                                                
i Images adapted from MURI, University of Minnesota; Android Authority 
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semiconductor in which the charge carriers are holes, indicated by the positive charge. In 

the “off” state, holes are unable to travel through the semiconductor because its Highest 

Occupied Molecular Orbital (HOMO) level is inaccessible from those of the electrodes. In 

the “on” state, an electric field is applied perpendicular to the current flow, bringing the 

HOMO level of the semiconductor into alignment with that of the electrodes, allowing for 

charge injection and transport. Thus, the gate voltage, VG, determines whether or not a 

current, ID, can flow from the source to the drain electrode. 

 

Figure 2 – Bottom gate, bottom contact OFET architecture, energy level diagram for 
hole transport, and extraction of charge carrier mobility from the OFET transfer 
curve. 

An OFET is characterized by its transfer curve, plotted at right in Figure 2: with 

source-drain voltage held constant, VG is swept from high to low and back again while 
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measuring ID. The relationship between these quantities is modeled by the following 

equation, referred to as the saturation regime model: 

 𝐼"# =
𝑊𝐶'(
2𝐿 µ 𝑉- − 𝑉/0 1 (1) 

where W and L are the width and length of the channel bounded by the source and drain 

electrodes, COX is the capacitance of the gate dielectric material, and µ and VT are the 

charge carrier mobility and threshold voltage, which are fitted model parameters. While 

both of these parameters are crucial to OFET operation in real-world environments, 

mobility has attracted the most research interest because of its relevance to application 

performance and its strong but complex relationship with material chemistry and 

microstructure.19,20 

Mobility is defined as the drift velocity of a charge carrier in a material per the 

strength of applied electric field and has units of cm2/Vs. In most cases, a higher mobility 

is better, enabling higher transistor switching rates and the control of stronger currents. In 

solar cells, mobility must be high enough to enable charge migration to electrodes, but not 

so high as to promote charge recombination.21 A mobility of 0.1 cm2/Vs is required for 

applications such as e-papers, while a mobility of 1 cm2/Vs would enable the use of organic 

transistors in the backplane control circuitry of liquid crystal displays. For the control of 

organic light emitting diode displays, it is estimated that a value of at least 10 cm2/Vs would 

be required. In comparison, the mobility of crystalline silicon for microprocessor 

applications is in the 100s to 1000s of cm2/Vs.22 
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1.2 Conjugated Semiconducting Polymers 

1.2.1 Why Poly(3-hexylthiophene)? 

Organic semiconductors fall into two major classes: small molecules and polymers. 

While small molecules are capable of achieving mobilities greater than 10 cm2/Vs as bulk 

single crystals, polymer semiconductors are generally more processable, making them 

better candidates for layer-by-layer large-area printing.23 Their rheological properties are 

highly tunable, facilitating greater control of flow in inks; they produce very smooth films, 

making deposition of further device layers easier; their solubility window is relatively 

narrow, enabling the selection of a wider variety of orthogonal solvents for subsequent 

material layers; and they have negligible vapor pressure, limiting inter-layer diffusion 

during heat treatment steps common to device processing.24 

Poly(3-hexylthiophene) (P3HT), the molecular structure of which is presented in 

Figure 3, has established itself as the canonical semiconducting polymer since its 

popularization in the early 2000s.25–28 While considerable efforts have been placed on the 

design and synthesis of new, often complex molecular structures with intrinsically higher 

mobility, P3HT has remained a source of continual research interest for the study of 

conjugated polymer process-structure-property relationships.23,29,30  This is because of its 

commercial availability, unique crystallization behavior, and the considerable momentum 

behind the theoretical treatment of its charge transport behavior.31 
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1.2.2 Nanofibers and Charge Transport in P3HT 

While the hexyl side chains of P3HT lend it its solubility, the π-conjugation of the 

thiophene rings along P3HT’s backbone yields many of its remarkable properties. The 

delocalized energetic states facilitate rapid charge transport, and also lead to physical π-π 

stacking interactions when chains are stacked co-facially, as depicted in Figure 3. The 

P3HT molecule in Figure 3 is a regioregular isomer: the side chains are evenly spaced, all 

falling to the left of the sulfur atoms in their respective thiophene rings. Regioregular P3HT 

is known to form nanofibrillar structures through π-π stacking.32 The length of the 

nanofiber is perpendicular to the polymer chain backbones. This point cannot be stressed 

enough. 

The most important aspects of P3HT nanofiber structure are highlighted in Figure 

3. Stacking distance between polymer chains is 0.38 nm, and stacks – comprised of 

thousands of polymer chains – can grow to be microns in length. P3HT also stacks 

vertically, referred to as lamellar stacking. This lattice plane has a spacing of 1.6 nm, and 

the insulating effect of the hexyl side chains makes it practically irrelevant for charge 

transport.33 By contrast, charge transport along planarized P3HT chains is theorized to have 

a mobility of up to 1 cm2/Vs, while transport along π-π stacks is governed by an activated 

charge hopping mechanism and thus has slightly lower mobility of 0.01 – 0.1 cm2/Vs.34 

For this reason, P3HT nanofibers are frequently drawn as viewed from above, with line 

segments representing the chains of the π-π stack, ignoring the lamellar stacking 

dimension. 
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Figure 3 – Above: P3HT, π-π stacking, and the structure of the P3HT nanofiber. 
Below: An early theory of charge transport in P3HT thin films, claiming that inter-
grain tie chains were more important for charge transport than isolated crystalline 
domains. Adapted with permission from Ref. 35. Copyright 2005 American Chemical 
Society. 

The molecular weight (MW) of P3HT has a well-characterized but complex effect 

on its mobility. In an early study on P3HT morphology, illustrated in Figure 3 , Kline et 

al. found that low-MW P3HT formed distinct nanofibers with a mobility of 10-4 cm2/Vs, 
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but higher molecular weight P3HT had higher mobility of 0.01 cm2/Vs with a disordered 

morphology.35 It was theorized that while charge transport was faster within the low-MW 

fibers, long-range transport was ultimately limited by the lack of inter-grain connectivity. 

However, nanofibers with higher molecular weight were soon observed, leading to OFET 

devices whose structure and mobility could be tuned through the control of the 

crystallization of P3HT. Today, it is known that both high intra-fiber crystallinity as well 

as inter-grain connectivity are important factors in determining mobility.36 

1.3 Processing P3HT Nanofibers  

1.3.1 The Cambrian Explosion, P3HT-style 

Over the next decade, studies on the P3HT nanofiber proliferated. This was due in 

part to its increasing commercial availability, enabling researchers to study its complex 

processing behavior without first having to synthesize it.37 But a large part of its appeal 

was that its crystallization could be controlled in many interesting ways, making it an 

endlessly revelatory case study on polymer crystallization. P3HT has been subjected to, in 

no particular order: thermal cycling,38 solvent-vapor annealing,39 aging,40 mixed solvents,41 

magnetic fields,42 inkjet printing,43 and mechanical rubbing,44 among many other 

treatments. Its thin films have been deposited by spin coating,45 drop casting,46 dip 

coating,47 blade coating,48 and spray coating (again, among many other methods).49,50 

These processing studies were conducted in the context of both OFETs and bulk 

heterojunction solar cells, where P3HT finds frequent use as an electron donor material.51 
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Figure 4 – Reported mobility of devices satisfying progressively tighter constraints in 
the OFET database. The constraint in each column stacks on all the previous 
constraints. Boxes indicate 25th percentile, median, and 75th percentile. Markers are 
semi-transparent so that high data densities appear darker. 

A major problem with these one-parameter-at-a-time studies is that they were 

performed on non-standardized OFET device platforms. The literature on P3HT-based 

OFETs was analyzed through the construction of a searchable database of OFET device 

processing and electrical properties, detailed in Appendix C.52 The major result is 

illustrated in Figure 4: in considering over 200 individual devices from over two dozen 

studies, reported mobility spans seven orders of magnitude. By filtering this database 

through successively more stringent constraints on processing and device architecture, a 

relatively standardized process was identified: P3HT with Mn > 20 kD, dissolved in 

chloroform with no pre-treatment, spin-coated on a bottom gate, bottom contact device 
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substrate with channel length > 10 µm. Even among the five devices identified in this 

search, the variance in mobility was still two orders of magnitude. Clearly, quantitative, 

meaningful process-structure-property relationships could not be reliably extracted from 

these isolated studies. 

1.3.2 Studying P3HT Processing on a Standard Device Platform 

In the years leading up to the inception of this project, the Reichmanis group began 

to demonstrate facile methods to control the nucleation and growth of high molecular 

weight P3HT nanofibers directly in solution, resulting in the fabrication of OFETs with 

mobilities up to 0.1 cm2/Vs, as shown in Figure 5. Solution-based preparation of 

nanofibers offered a way to obtain devices with high mobility, without requiring complex 

post-deposition treatments such as solvent-vapor annealing that would significantly 

complicate roll-to-roll processing. In the lab experiments, thin films were deposited via 

spin coating on a standard OFET platform: bottom gate, bottom contact architecture with 

gold electrodes, an untreated SiO2 dielectric layer, and 50 µm channel length. Preeminent 

among the new solution processing methods were sonication, UV irradiation, and poor 

solvent treatment of solutions of P3HT in chloroform. These treatments resulted in surface 

morphologies with observable nanofiber structures, similar to the fibers observed by Kline 

et al. and many others. In addition, aggregation of P3HT in the solution and solid states 

was confirmed by its well-characterized effect on its UV-visible absorbance spectrum. 
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Figure 5 – Nucleation, growth and deposition of P3HT nanofibers through various 
solution processing techniques, with accompanying AFM images (2 µm) showing the 
resulting fibrillar morphologies. 

1.3.3 Structural Characterization of P3HT 

 Structural characterization of P3HT thin films proceeds through three major 

techniques, illustrated in Figure 6. The aggregation of P3HT is reflected by its UV-vis 

absorbance spectrum in both the solution and solid state. The percentage of P3HT involved 

in aggregates is directly correlated with the percentage of the spectrum accounted for by a 

fitted Frank-Condon progression (purple area), with amorphous chains making up the 

balance.53 The ratio of the two largest peak areas is used to calculate a sample’s exciton 

bandwidth, which is correlated with the conjugation length and increased planarization of 

the P3HT backbone, as well as a strengthening of J-aggregate behavior relative to H-

aggregate.54 This can also be interpreted as intramolecular electronic interactions becoming 

stronger relative to intermolecular interactions. The aggregate fraction and conjugation 
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lengths tend to rise as more P3HT chains become incorporated into nanofibers.55 A dichroic 

ratio can also be calculated from polarized UV-Vis measurements, indicating the degree of 

bulk anisotropy in P3HT chains’ in-plane orientations. 

 

Figure 6 – Structural characterization of P3HT thin films with examples of raw data, 
model parameters, and their physical significance. 

 Grazing incidence wide angle X-ray scattering (GIWAXS) can be used to analyze 

the spacing, size and bulk orientation of crystalline grains in the thin film. Scherrer’s 

equation allows estimation of the grain size along each lattice vector using the full-width-
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half-max of each peak, and Herman’s orientation factor quantifies the out-of-plane 

orientation of crystalline grains.56 P3HT crystals can adopt many orientations relative to 

their substrate, the two most common being face-on and edge-on. Since charge transport 

occurs primarily through polymer chains and π-π stacks, the edge-on orientation is 

desirable for OFETs. 

While UV-Vis and GIWAXS have provided significant insight into the 

crystallization of P3HT, they cannot directly characterize what is arguably the most 

important aspect of P3HT thin films: the fibers themselves. Since the early days of research 

on P3HT, AFM images have been presented as evidence of its intriguing fibrillar 

morphology. The phase channel of AFM imaging provides excellent contrast between 

P3HT’s nanofibrillar phase and the surrounding disordered polymer matrix, yielding 

images like those shown in Figure 5, Figure 6, and Figure 7. 

Properties of individual fibers such as their width have been measured from images 

by eye, but a comprehensive analysis of the long-range packing and alignment behavior of 

P3HT nanofibers had never been performed.57 This was especially troubling given the clear 

importance of grain boundaries and orientational order to charge transport.58 Researchers 

in the simulation community agreed that a quantitative understanding of meso-scale 

microstructure was a major missing piece in bridging the gap between molecular 

simulations and device-scale models of charge transport.59 Furthermore, it was anticipated 

that as research on nanofiber processing in the Reichmanis group progressed, the observed 

fibrillar structures would grow in complexity, requiring higher resolution imaging as well 

as a quantitative model to relate their structure to solution processing and electrical 

properties. This ultimately required advancements in AFM imaging of P3HT, 
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microstructural image analysis, and the management of raw process-structure-property 

data. The greatest among these challenges was the extraction of fibers from images. 

1.4 Extracting Fibers from Images 

1.4.1 Classification, Segmentation, and Measurement 

A grayscale image is a two-dimensional unsigned 8-bit integer array in which each 

element corresponds to an intensity. Images do not intrinsically contain any high-level 

information about what objects they depict. As humans equipped with 100-billion-

parameter neural networks, we can glance at an image in Figure 5 and immediately 

recognize that it contains fibers. If we sit down for a time, we can probably trace every 

single fiber in each image. This is because, evolutionarily, our brains have developed and 

refined complex visual pathways, some of which are dedicated to the recognition of fibers. 

In contrast, in the field of computer vision, trained convolutional neural nets are just 

beginning to match human accuracy in the former, simpler task of recognizing that an 

image contains fibers at all.60 This is referred to as classification, and is demonstrated in 

Chapter 5 for fiber recognition, as well as for the classification of image artifacts. 

Object localization, or segmentation, as it is called in materials science, refers to 

the task of identifying which pixels belong to each object in an image. This seems easy at 

first glance; the fibers are the brighter pixels in the images. However, Atomic Force 

Microscopy of soft materials is inherently noisy and low contrast, partially because it is not 

truly an imaging technique in the strictest sense of the word. Instead, AFM generates an 

image array from the response of a tip to a drive signal as it traverses the surface of a 

sample, and thereby comes with a wide variety of artifacts, which are analyzed in detail in 
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Chapter 4. In many cases, these artifacts look very fiber-like to a computer vision 

algorithm, which complicates the segmentation process. 

Furthermore, P3HT nanofibers exhibit several unique structural features that, while 

interesting physical phenomena in and of themselves, also cause unexpected difficulty in 

the extraction process. A blown-up 5 µm image representative of these difficulties is 

provided in Figure 7. Nanofibers exhibit a wide range of lengths and packing densities. 

The case of high packing density presents extreme difficulty, even for a human performing 

manual tracing. Oftentimes in larger images, it is virtually impossible for a human to 

successfully deconvolute densely packed fibers, and a computer vision approach is the only 

way to obtain a reliable estimate of their structure. Finally, P3HT nanofibers exhibit abrupt 

nano-scale kinks (high curvature bends) that differentiate them from the smooth fibers 

considered in previous approaches to the fiber extraction problem.61–63 This characteristic 

is examined from a crystallization perspective in Chapter 4. 
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Figure 7 – Characterization of P3HT nanofibers via AFM, with representative images 
provided at different length scales. 
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1.4.2 The Beauty of Open Source 

 Even once we extract the fibers from an image, it is not immediately obvious which 

structural order parameters will correlate meaningfully with processing, a common 

problem in the analysis and control of complex systems and materials.64,65 Fortunately, this 

study is not the first time a researcher has tried to extract fibers from their images, and it 

certainly will not be the last.62,63,66 Advances in imaging technology67 and a steady increase 

in research on fibrillar materials68–70 and other soft materials with complex, oriented 

structures indicate that this problem will only grow in magnitude as time goes on. To this 

end, several open source software tools have been developed with the aim of mitigating 

the current difficulties with fiber analysis. Four programs stand out in particular, each 

developed for a specific application and targeting one or two aspects of the problem with 

relative success: the CellProfiler Worm Toolbox,71 FIRE,72 ADAblock,73 and 

FiberApp.74,75 

The relationship between these packages is illustrated in Figure 8. For the purpose 

of analyzing P3HT nanofiber images, each package has advantages and drawbacks but 

none are able to accomplish all of the desired goals. Without going into algorithmic detail, 

the package with the best analytical capabilities was FiberApp: designed for 

generalizability, it contains models for nearly every aspect of fibrillar structure one could 

reasonably want to quantify. Its main drawback is that fiber extraction is only possible 

through enhanced manual tracing. Besides a lack of intellectual contribution, accurate 

manual tracing is time consuming (regularly taking up to an hour per image), and it was 

not possible to estimate how many images would eventually be contained in the 

Reichmanis image library (hundreds). Manual tracing also lacks any semblance of 
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statistical rigor or reproducibility. That being said, FiberApp was used extensively 

throughout this work to generate ground truth training images for accuracy testing and 

optimization, and contributed to a fuller understanding of the theory of fibrillar structure 

quantification. 

 

Figure 8 – Open source software that contributed to GTFiber.71,74 CellProfiler, 
ADAblock, and FIRE contained strategies for the automated skeletonization of fibers, 
while FiberApp contained algorithms for manual vectorization and structural 
analysis. GTFiber unites these algorithms to provide automated fiber vectorization 
and analysis. 

The other three packages have strategies for automated extraction but are 

mismatched in their analysis capabilities or are not robust to the idiosyncrasies of AFM 

images of P3HT nanofibers. CellProfiler, FIRE, and ADAblock generally followed the 

same heuristic model of extraction, with CellProfiler incorporating a machine learning 

element. However, CellProfiler was designed specifically to analyze fat content in worms, 

ADAblock for block copolymer defect analysis, and FIRE for collagen network analysis, 

and are thus inherently limited in their applicability to P3HT nanofibers. In addition, some 

of these packages were tested on relatively clean images in which the fibers were already 
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strongly contrasted with their background, meaning that our images created problems for 

their extraction procedures. 

1.4.3 GTFiber 

Since any workable solution would involve combining pieces from all of these 

packages, FiberApp was chosen as the base off of which to build the image analysis 

pipeline because it was closest to the desired result. Through extensive trial and error 

incorporating the best elements from each of these open source software packages, a 

moderately robust image analysis pipeline was developed. Each new image produced from 

my own OFET processing experiments as well as those of my collaborators in the 

Reichmanis group introduced either a new structural feature to analyze or a new imaging 

artifact that broke the image processing algorithms. Detailed analysis of the new images 

also suggested new experiments to perform that likely would not have come up otherwise. 

Through this iterative process, both the image analysis program and our understanding of 

the process-structure-property relationships for nanofibrillar transistors improved. 

A breakthrough occurred with the implementation of a graphical user interface 

(GUI). In attempting to create an interface that others could navigate, the problem, 

approach, and goals became clearer. Thus, GTFiber was born, and is consequently one of 

the primary contributions of this thesis. GTFiber is a comprehensive image analysis 

software package for fibrillar microstructures, compiled as a standalone application for 

both Windows and Mac OS and available at [gtfiber.github.io]. It contains segmentation 

algorithms from CellProfiler, FIRE, and ADAblock, the vectorization and analysis suite 

from FiberApp, and is bolstered by additional pre-processing filters of my own curation 
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that make it robust to the particular artifacts common to AFM and P3HT. Further 

optimization and accuracy quantification for the present image library was implemented 

through a machine learning approach. GTFiber is thus an improved iteration of fiber 

analysis in an open source software ecosystem that can provide immediate benefit to some 

researchers, and algorithmic strategies and implementations for others. 

1.5 Overview of Chapters 

Chapters 2 and 3 outline the development of GTFiber, and include examples of 

its application to the process-structure-property relationships of P3HT OFETs along the 

way. Early in the program’s development, it became evident that orientational order is 

much simpler to analyze than fiber length distributions; it can be measured without 

extracting individual fibers. Thus, Chapter 2 describes the analysis of orientational order 

in polymeric transistors, while Chapter 3 builds on this by adding fiber length, width, and 

packing density to the mix. The volume of image data considered also increases with each 

additional chapter, as experimental capabilities grew in both complexity and throughput 

over time. 

The development of GTFiber and the accompanying analysis of process-structure-

property relationships in P3HT-based transistors was performed as part of a traineeship 

with the NSF FLAMEL program: From Learning, Analytics, and Materials to 

Entrepreneurship and Leadership – a program under the Materials Genome Initiative 

(MGI).76 The MGI is an effort to halve the time and cost of developing new materials by 

leveraging data science, machine learning and supercomputing to handle the rapidly 

expanding volume of data produced by materials research.77 
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With the aims of the MGI in mind, Chapter 4 grapples with the broader problem of 

handling large volumes of materials image data. It explores large image databases from a 

high-level perspective through the analysis of 3,000 images from a single AFM instrument. 

Cutting-edge tools from modern computer vision such as convolutional neural nets are 

utilized to demonstrate automated classification of microstructures and image artifacts, as 

well as reverse image search functionality to connect researchers whose experiments 

produce similar structures. It is expected that the methods and results presented herein will 

hold broad appeal both in the organic electronics and materials informatics communities. 
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Chapter 2. Automated Analysis of Orientational 

Order in Polymer-nanofiber-based Organic 

Transistors 

In this chapter, we introduce GTFiber 1.0, the first standardized protocol for the 

quantification of structural AFM images in our field. In this version of GTFiber, fibers 

were segmented as an “image skeleton,” which permitted the analysis of orientational 

order, but not yet fiber length. However, even at this stage significant insight was gained 

from its application to our group’s structures. 

2.1 Introduction 

Automated curve and line detection for structural analysis in biological and 

materials applications has received a steady level of attention for nearly two decades. 

Applications can be found in fields ranging from C. elegans behavioral analysis71 and 

tomography of fibrous materials61,78 to fingerprint enhancement and analysis.79 Each 

application makes use of different image features for analysis: fingerprints and block 

copolymer structures are analyzed for defects (discontinuities and branching points in 

curves),73 fibrous materials may be characterized by persistence lengths and fiber 

orientations, and liquid crystalline fibers are analyzed for orientational order across length 

scales.75 While the mathematical tools for performing these analyses have been known for 

some time, it is only within the last year or two that they have been implemented as user-

friendly software packages. As imaging technology continues to advance, it is imperative 
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that research groups have access to these tools to easily extract as much quantitative 

knowledge from their images as possible. 

The software introduced in this chapter is designed to fill a need for image analysis 

in the field of organic electronics. Their electrical properties are extremely sensitive to their 

structure at multiple length scales, as demonstrated by the broad range of charge carrier 

mobility values reported in Appendix C.28,35,80–82 Shear-induced alignment of π-π-stacked 

polymer nanofibers has shown potential as a scalable method to obtain high mobility 

OFETs.49,83 In order to rationally design such processes to obtain devices with controllable 

mobility, the process-structure-property relationships must be understood, requiring 

rigorous quantification of the thin film morphology present at the dielectric interface of the 

semiconducting channel. This data would also provide a bridge between the experimental 

and simulation communities.36,59 

AFM grants access to the real-space polymeric structure inside the channel of a 

device, which would be expected to correlate directly with that device’s measured 

performance, as well as provide data on the long-range orientational order of fibrillar 

aggregates. In contrast, UV-visible (UV-vis) absorption and X-ray techniques are not easily 

applied to the structure present in device channels. This is not to discount the value of such 

techniques. Thin film structural features found to correlate well with measured hole 

mobility include exciton bandwidth,54 paracrystalline disorder,36 and edge-on orientation 

of crystalline domains.84 Exciton bandwidth, a measure of electronic delocalization, can be 

extracted from UV-visible absorption spectra (UV-vis). Paracrystalline disorder can be 

extracted from X-ray diffraction peak shape analysis, and edge-on orientation is quantified 
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through Herman’s orientation factor, which can be calculated from grazing incidence wide 

angle X-ray scattering data.56  

AFM images are often presented as evidence of a fibrillar or nodular structure, but 

have also been used to calculate quantities such as fiber widths and lengths.35,85 Verilhac 

et al. found that P3HT fiber width is directly correlated with chain length up to about 30 

nm, after which chain folding perpendicular to the π-π stacking direction limits fiber 

width.82 Surin et al. used AFM to characterize fiber lengths and widths, finding a similar 

correlation, and demonstrating that films with the fibrillar morphology displayed the 

highest mobilities.28 Surin et al., Park et al., and Cho et al. each observed an increase in 

fiber width after thermal annealing, as extrapolated from AFM images.28,86,87 In each case, 

physical parameters were measured by eye, using a few especially well-resolved regions 

of images. Singh et al. obtained high-resolution AFM images spanning OFET device 

channels, revealing the influence of source and drain contacts on fiber deposition and 

contact resistance. These studies represent some of the earlier uses of AFM for structural 

knowledge extraction. 

In recent years, our group has developed solution-based methods for the formation 

of P3HT nanofibers that allow the fabrication of high-mobility OFETs with rapid thin film 

deposition methods such as spin-coating and blade coating. This includes the use of 

sonication, poor co-solvent addition, ultraviolet radiation, and microfluidic processing to 

attain solutions with a high degree of aggregation, and in some cases, lowered π-π-stacking 

distances.80,81,83,88–90 In films deposited from solutions containing nanofibers, various 

degrees of fiber alignment can be observed at a variety of length scales via AFM. A 

question that frequently arises is how much of this alignment can be attributed to processes 
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in solution, possibly due to the liquid crystalline behavior of P3HT, and how much comes 

as a result of flow-induced alignment during thin film deposition.91,92 Furthermore, can 

P3HT nanofiber alignment be linked to the measured charge transport properties of each 

film, namely the hole mobility? Herein lies the motivation for the development of the 

holistic image analysis procedure introduced in this article. 

Image analysis has been used previously in a variety of fields to quantify fiber 

alignment. For tissue engineering, differences in alignment of gelatin scaffolds due to the 

electrospinnning process were demonstrated using large-scale image analysis.93,94 Strain-

induced alignment of collagen gels and its effect on their mechanical properties has been 

quantified through microscopy analysis.63,69 In polymer-fiber composites and composites 

of carbon nanotubes, micro-CT imaging has been used to obtain both fiber length and 

orientation distributions.62,70 In this work, we present a robust image analysis workflow 

that combines the best practices of each of these fields and demonstrate its application to 

the analysis of the thin film morphology of P3HT-based OFETs. It has been compiled from 

MATLAB as a standalone application so that readers with no computational experience 

can reproduce the protocol and easily apply it to their own images, and the source code has 

also been made available for those who wish to study and modify the procedure. 

2.2 Methods 

2.2.1 Overview of Orientational Order Extraction 

P3HT nanofibers form a densely packed fibrillar structure that exhibits wide 

variations between different thin film deposition methods, as observed via large-scale AFM 

images. The phase channel of tapping mode imaging, in particular, can resolve which 
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regions of a film are composed of the more crystalline nanofibers, and which regions 

contain more amorphous material. When performing automated analysis on densely 

packed structures, fiber orientation and alignment are the most reliably quantifiable 

features. The contour length and persistence length of fibers is difficult to reliably estimate 

when significant overlap is present, and fiber width estimation becomes increasingly 

inaccurate as the length scale of the image increases (unless resolution is increased 

accordingly). However, as long as fiber backbones are resolved, images of increasing 

length scales reveal a wealth of information on fiber packing, orientation, and orientational 

order, which offer insight into the mechanisms of fiber formation and interaction, as well 

as the effects of solution processing on long range order and its contribution to device-scale 

charge transport. 

In Figure 9, the main results that fall out of the analysis procedure are introduced. 

While many structural features can be extracted from digitized fibrillar microstructures 

with varying levels of confidence, orientational order is the most robust to noise and 

imperfect segmentation, and its extraction requires the fewest assumptions and specialized 

treatments. Figure 9A is a cropped 5×5 µm section of a 10×10 µm AFM phase channel 

micrograph of a P3HT thin film deposited from a solution of P3HT in chloroform (5 

mg/mL) via spin-coating. It was also purposefully chosen as an example with low contrast 

and high levels of image noise to demonstrate the minutiae and robustness of the protocol; 

other images presented later are much cleaner. This image is used as an example as each 

image processing step is explored, including the effects of various parameters as presented 

in Appendix A. The Orientation Map, Figure 9B, is the final result of the processing 

workflow: an image in which each fiber is represented by a backbone of single pixel width, 
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and each of those pixels is labeled with an orientation from 0 to 180°, as indicated by the 

attached color wheel. The software introduced in this article generates the Orientation Map 

as well as analytical results. Analysis of the Orientation Map yields two principle results: 

an orientation distribution (Figure 9C) and the decay of orientational order as a function 

of frame size (Figure 9D). 

 

Figure 9 – Main results of the protocol. (A) A cropped version of the phase channel 
of a tapping mode AFM image. (B) False color Orientation Map extracted from the 
original image. Each pixel’s orientation corresponds to an orientation on the attached 
color wheel. (C) Orientation Distribution extracted from the Orientation Map. The 
radial axis indicates the count of pixels of a given orientation. A diametrical black line 
segment indicates the average orientation, and the full-frame value of S2D is indicated 
at bottom left. (D) Decay of the orientational order parameter, S2D, as a function of 
frame size. Fitted model parameters are indicated at upper right. 

The orientation distribution in Figure 9C indicates that this structure has an average 

orientation of ≈80° off of the horizontal, and that the distribution is anisotropic. The radial 
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C. Orientation Distribution D. S2D Decay Function
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axis of the orientation distribution counts pixels whose orientations fall into each of 36 bins 

(width 5°). The distribution is forced to be symmetric to 180° rotation because the fibers 

do not have any inherent directionality that is accessible through the image. In other words, 

an orientation vector of [1,1] should count toward the same bin as a vector of [-1,-1]. 

Because the radial axis counts pixels, a long fiber will contribute more to the distribution 

than a short fiber of the same orientation. Skeletonization of the fibers to single-pixel 

thickness ensures that fiber width does not bias this distribution. 

The degree of anisotropy of the orientation distribution is captured by the 

orientational order parameter S2D, similar to Herman’s Orientation Factor in GIWAXS 

analysis.73,75 Mathematically, S2D is defined as: 

 S2D	=	2	 cos	2θn 	–	1 (1) 

where 𝜃= is the angle between an individual fiber pixel and the image’s overall director, 𝑛, 

which is chosen as the average orientation of the population. In the context of this analysis, 

S2D varies between 0 and 1; the expected value of cos	2𝜃 for uniformly random angles is 

0.5, yielding an S2D of 0 invariant to the selection of the director, and a uniform oriented 

population generates an cos	2θn  of 1, yielding an S2D of 1. The director is plotted in each 

Orientation Distribution as a centered black line segment, as in Figure 9C. 
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2.2.2 Calculating the Decay of Orientational Order 

Figure 9D plots the value of the orientational order parameter S2D as a function of 

frame size. This analytical method was introduced by Usov et al. in the FiberApp software 

package – it has been adapted for use here, where fibers are discretized as backbone pixels 

instead of segment vectors.74 Since S2D can be calculated for any population of oriented 

objects, it is defined for a frame as small as a single pixel or as large as an entire image. As 

illustrated in Figure 10, this calculation can be averaged over many frames tiled over an 

image and performed at increasing frame sizes to obtain the decay function of S2D. Sampled 

frames that contain no fiber pixels are excluded from the average. 

The two relevant computational parameters for this procedure are the grid step, 

which determines how many frames are sampled from the image to obtain the average S2D 

for that frame size, and the frame step, which determines the level of discretization of the 

frame size axis. The decay function plotted here uses a grid step of 200nm and a frame step 

of 400 nm, although this is not to scale in the schematics in Figure 10. The schematics 

demonstrate how the grid step and frame size affect the sampling of S2D over the image. 

Since the grid step remains constant, the smallest sampling frames may have space between 

them, while larger frames will overlap one another. When the frame size becomes too large 

to accommodate multiple samples at the specified grid step, a single centered frame is used. 

While this numerical implementation leads to an under-sampling of the fibers at the edges 

of the image, the values of the decay function are remarkably invariant to the grid step size, 

provided that it is sufficiently small. Undersampling begins to influence the results for grid 

steps greater than one-fifth the image width.  
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Figure 10 – Calculation of S2D decay function from a skeletonized image. Each point 
on the graph represents the average value of S2D calculated from evenly spaced frames 
in the image. The grid step determines the spacing between each frame, which can 
create sparsely distributed frames or highly overlapped frames. The frame step 
determines the level of discretization of the x-axis (frame size). White dots in the grid 
step schematic indicate the centers of frames. 

Finally, an exponential decay function is fit to S2D with a constant term to account 

for the asymptotic full-frame value of S2D, which does not necessarily decay to zero: 

 𝑆1"(𝑟) = 𝑆CDEE + 1 − 𝑆CDEE 𝑒
HI

JK (2) 

where Sfull is the asymptotic value of S2D, r is the frame size of calculation, and λC is the 

length scale of orientational order decay in the image, referred to hereafter as the decay 

length. Similar exponential decay functions have been implemented in other fields to 
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analyze orientational order.73,75 As shown in Figure 10, S2D asymptotically approaches a 

full-frame Sfull of 0.41 with a decay length of 559nm. It is important to distinguish between 

S2D and Sfull: S2D is a value that is calculated from a single frame of fiber segments, while 

Sfull is a model parameter fit to the set of all values of S2D calculated at all frame sizes.  

 

Figure 11 – Graphical representation of four extrema in the space defined by λC and 
Sfull. (A) Low Sfull, high λC (B) high Sfull, high λC (C) low Sfull, low λC (D) high Sfull, low 
λC. 

 These parameters can be used to quantitatively analyze and compare images of 

fibrillar structures. The four exemplary structures shown in Figure 11 represent extrema 

in both Sfull and λC. Sfull is visually intuitive: structures B and D clearly possess a greater 

degree of alignment (more fibers pointing in the same direction) than A and C. Decay 

length is more nuanced: it represents the length scale (frame size) at which S2D has decayed 

63% of the way to the final value of Sfull. Images with a short decay length (C and D) 

possess the same degree of alignment when measured in both small and large frames, on 

A
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D
C
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average. In Figure 11C, a small frame likely contains a few randomly oriented fibers, while 

the entire image simply contains more randomly oriented fibers. This is in contrast to 

Figure 11A, in which small frames contain fibers of similar orientations, while the full 

image contains fibers of many different orientations. In this way, λC represents the length 

scale of the persistence of orientational order. 

The difference between Figure 11B and D is more subtle. Figure 11D has a short 

decay length because of the defects highlighted by the overlaid boxes. These short 

horizontal fibers lower the average calculated S2D at short and long length scales, thereby 

lowering the value of λC. On the other hand, the orientation of the fibers in Figure 11B 

varies more gradually from the top of the image to the bottom, thus larger frames must be 

sampled to see the lowest alignment, yielding a higher value of λC. In this way, λC quantifies 

the influence of strong local defects on overall alignment. A third axis could be included 

to quantify the direction of alignment, which becomes more meaningful at higher values 

of Sfull. 

2.2.3 Obtaining the Orientation Map through Image Processing 

The primary image processing challenge in this protocol is to obtain the binary 

skeleton, a valuable data structure for the analysis of fibrillar microstructures.61,71,73 Once 

obtained, a binarized skeleton can be used for spatial correlation analysis, path finding, 

percolation analysis, and virtually any other relevant structural analysis desired.71,95,96 The 

skeleton is a binary image in which fibers are thinned to single pixel width so that pixels 

take on a value of “1” if they lie on a fiber’s backbone, and “0” if they do not. For 

orientational analysis, each pixel should also carry a value for its orientation; this can be 
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represented on a domain from 0 to 180°. The combination of the skeleton and orientations 

yields the Orientation Map, as introduced in Figure 9B. The process of obtaining the 

skeleton from the original is made especially difficult given the low contrast of the AFM 

phase channel and the presence of substantial noise. These complications are quite 

common, so a robust procedure for extracting the binary skeleton would be widely 

beneficial. The approach is outlined below, and has been implemented with a graphical 

user interface in MATLAB. A schematic of the image filters and morphological operations 

that are used to accomplish this is provided in Figure 12, using a 5×5 µm region of an 

originally 10×10 µm image as an example. 

Stages 1 and 2: Coherence-Enhancing Anisotropic Diffusion Filtering 

To generate a skeleton, a binarized image must first be obtained in which white 

pixels represent original pixels that are within fibers, and black pixels represent non-

fibrillar original pixels. An example of a simple binarized image is shown in Stage 4 of 

Figure 12. This could usually be obtained by applying a global black and white threshold 

value, but nonidealities such as long-range image gradients, brighter noise from amorphous 

regions, and darker noise from within fibers make this a near impossibility. Contrast 

enhancements through mean and median filtering are also ineffective due to the high levels 

of noise and low contrast. Examples of failed thresholding are provided in Appendix A. 
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Figure 12 – Outline of image processing workflow used to obtain the skeleton and 
subsequent Orientation Map. 
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Effective contrast enhancement and smoothing can be attained through coherence-

enhancing anisotropic diffusion filtering, an advanced filtering method first introduced by 

Weickert, implemented here with the algorithm by Perona and Malik.79,97 The result of the 

anisotropic diffusion filtering step is shown in Stage 2, “Diffusion Filter,” for the example 

image in Figure 12. Fibrillar regions appear substantially smoother, with more uniform 

brightness. This method diffuses pixel intensity (gray values) using a 2-D diffusion tensor 

proportional to the local anisotropy of the image. At each time step, pixels’ gray values are 

diffused in a direction that corresponds to the nearest fiber, effectively smoothing the image 

along the direction of fiber travel. The greatest advantage of this approach is that the 

orientation calculated at each pixel can be recovered from the diffusion tensor after filtering 

and applied directly to the final Orientation Map. A discussion of the diffusion tensor and 

its unique properties, as well as the numerical implementation of anisotropic diffusion 

filtering, can be found in Appendix A. 

    

Figure 13 – The effect of the “diffusion time” parameter on diffusion filtering results, 
from left to right: original gray scale, 1s diffusion time, 3s, 8s. Constant parameter 
values: initial Gaussian smoothing, 10nm; orientation smoothing, 30nm. 

While there are seven parameters that can be adjusted with diffusion filtering, there 

are only two that have a significant influence on the results: orientation smoothing, and 

diffusion time. Increasing diffusion time is illustrated in Figure 13, while orientation 

smoothing is illustrated in Appendix A, and can be explored via the graphical user 
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interface as well. Orientation smoothing refers to an isotropic Gaussian filter applied to 

each element of the diffusion tensor, so that each pixel has an orientation that represents 

the weighted average orientation of its surrounding pixels. In this way, sharply resolved 

fiber edges help inform the orientation of a fiber’s backbone. The standard deviation of this 

Gaussian filter, ρ, determines the weight of each pixel’s contribution to its neighbors, and 

how large a sampling neighborhood is used. If ρ is too small, noisy fiber edges will limit 

filter performance, but if ρ is too large, fibers with high contrast will influence the 

orientation of their neighbors. A good heuristic is to set orientation smoothing to the typical 

width of a single fiber. 

Diffusion time determines how many time steps of the diffusion filter are 

performed, although a “time step” has no physical meaning here and simply represents how 

finely the integration method is discretized. A default time step of 0.15 “seconds” is 

typically used. Diffusion times between 1 and 10 seconds are typically appropriate. Longer 

diffusion times tend to blend smaller fibers into the background. Even after diffusion 

filtering, however, contrast is still relatively low, and thresholding yields an unsatisfactory 

result. 

Stages 3 and 4: Top Hat Filtering and Thresholding 

Once fibrillar regions have attained more uniform local gray values, traditional 

contrast-enhancing filters can be applied. Top hat filtering is a feature-enhancing filter that 

has been used to process angiograms and mineralogical images, among other 

applications.98 Top hat filtering performs a morphological image opening (erosion 

followed by dilation) with a disk-shaped structuring element. The result of the opening is 

subtracted from the original gray scale image, resulting in an enhancement of sharp peaks 
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in the original. This can be observed in Stage 3, “Top Hat Filtering” in Figure 12, and the 

individual steps involved are illustrated in Figure 47 of Appendix A. Only one parameter 

affects this step: the top hat filter size, which is the radius of the disk-shaped structuring 

element used for erosion and dilation. The size is specified in nm by the user, which is 

converted to pixels and rounded to an integer value. A size less than the typical fiber width 

will enhance only the narrowest fibers, while values greater than the maximum fiber width 

attain more broadly effective contrast enhancement, so the only guideline for this parameter 

is to set it moderately above the estimated fiber width. 

After Stage 3, the image is now in an acceptable state for binarization – that is, 

discretely classifying which pixels belong to fibers and which do not. While a global 

threshold can produce acceptable results at this point, variations in intensity between fibers 

may still cause complications. A more robust method is to apply an adaptive threshold, 

especially when fibers are very dense. The result of this thresholding procedure is shown 

in Stage 4 of Figure 12, “Threshold and Clean.” The cleaning step removes contiguous 

white regions (of 8-connectivity) smaller than an area specified in nm2. The typical setting 

used in this protocol is 2500 nm2, which corresponds to an area of 26 pixels in a 5×5 µm, 

512×512 pixel image. The performance of various thresholding procedures is illustrated in 

Appendix A, Figure 51. 

Stages 5 and 6: Skeletonization and Orientation Mapping 

 The previous steps were all in service to generating a realistic, meaningful skeleton, 

which requires a smooth binarized image of the fibrillar structure. Skeletonization is a 

crucial step to obtain meaningful physical analyses of many images. It has been used to 

analyze human motion, medical images, and of course, fibers and other fiber-like 



 38 

objects.61,71,99–101 Skeletonization precludes fiber width from biasing measurement of the 

orientation distribution: since each pixel contributes one count to an orientational bin, a 

thicker fiber’s orientational contribution would scale linearly with its thickness. The 

process of skeletonization identifies the endpoints of a connected white object and erodes 

the boundaries until that object is represented as (possibly branched) line segments of 

single-pixel thickness. It is implemented through a built-in MATLAB function. Bumps 

along the edges of the thresholded image (Stage 4) lead to the identification of false fringe 

branches in the skeleton. A trimming algorithm was written to remove extraneous fringe 

branches from the main fiber backbones – the user can specify the maximum length of 

fringe branches to remove. Details of this step are contained in Appendix A. 

Finally, the orientation map is generated from the skeleton by recovering 

orientations from the diffusion tensors that were calculated at the final time step of 

diffusion filtering at each pixel in the skeleton. These values are used to generate a false-

color image of the Skeleton in which orientations off of the horizontal are represented by 

their hue on a color wheel. Every step of this procedure can be reproduced and implemented 

by researchers using a standalone application, shown in Figure 14. An image is loaded, 

with dimensions provided by the user in nm. Settings for each filtering step can be chosen, 

or the default values can be used. A single button runs the entire filtering regime and 

produces the skeleton. The user can choose to display the result of each step of filtering in 

order to visualize the effect of their chosen parameters. After filtering, the Orientation Map 

can be produced with a single button push, and the decay function can be plotted as well. 

Once parameters have been found that produce an acceptable result, a batch of images can 

be run from a folder with the chosen settings, with the results saved in a .csv file readable 
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by Excel. Publishable figures can be saved as well. The software is available for download 

at [gtfiber.github.io]. 

 

Figure 14 – Graphical User Interface for the image analysis methods introduced here, 
written in MATLAB and compiled as a standalone application. 

The contour extraction method presented here is extremely robust. From any image 

with one-dimensional features whose brightness contrasts moderately with the background, 

this software can reliably extract the backbones and orientations (the Orientation Map). 

Examples of the application of the software to Micro-CT, SEM and TEM images are 

provided in Appendix A. Application to three-dimensional structures and data is also 

possible and is the subject of an ongoing collaboration. Other ongoing research efforts 
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include the analysis of structural parameters for spiral-like and elliptical morphologies, as 

well as the use of machine learning for fiber classification and clustering. 

2.3 Results 

2.3.1 The Effect of Solution Processing on Morphology 

 The image analysis protocol outlined above has been instrumental in analyzing the 

long range ordering and orientation of thin films of P3HT nanofibers. The many processing 

steps involved in solution processing of organic transistors makes it difficult to deconvolute 

the origin of structural order: does it arise in solution, or during deposition? What is the 

contribution of each step? In Figure 15 we present the results of three high-resolution 5×5 

µm AFM images that have been analyzed with our software. Figure 15A shows a film 

deposited from a solution of P3HT in chloroform and 15 vol% 2-methylpentane, a poor co-

solvent. The solution was sonicated for two minutes and allowed to age for four days. 

Similarily, Figure 15B shows a film deposited from a P3HT/chloroform solution that was 

sonicated for two minutes aged for four days, without a poor co-solvent. Figure 15C shows 

a film deposited from a P3HT/chloroform that was processed under UV irradiation in a 

microfluidic flow system.83 These processing methods are detailed in Figure 20 of 

Chapter 3; for now, the images simply serve as an example of the variance captured by 

the order parameters introduced here. All films were deposited via spin-coating for 60 s at 

1500 rpm. 
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Figure 15 – AFM images and Orientation Maps from films spin-coated from three 
solutions. (A) P3HT in chloroform and 15 vol% 2-methylpentane (5 mg/mL), 
sonicated two minutes then aged four days. (B) P3HT in chloroform (5 mg/mL), 
sonicated two minutes then aged four days. (C) P3HT in chloroform (5 mg/mL), 
processed via microfluidic-cooling-UV treatment. Image processing parameters used: 
Gaussian smoothing, 10nm; orientation smoothing, 30nm; diffusion time, 8s; top hat 
size, 30nm; adaptive thresholding; noise removal, 2500 nm2; skeleton fringe removal, 
40nm. Orientation Maps have been anti-aliased for printing clarity. 
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Figure 16 – Decay of orientational order and schematic of inter-fiber interaction for 
each of the three morphologies presented in Figure 15. Parameters used for 
orientational order decay calculation: frame step, 200nm; grid step, 200nm. 

Using the original AFM images, it can be said qualitatively that long-range 

orientational order appears to increase over these three samples, from A to C. Using the 

structural visualizations and order parameters, we can better quantify these differences and 

begin to understand the mechanisms that bring them about. The Orientation Maps highlight 

a phenomenon termed “fiber bundling” – the presence of large bundles of neighboring 

fibers of the same color, i.e. whose backbones are parallel to one another. Note that many 

more isolated fibers with no parallel neighbors are present in Figure 15A, whereas the 

fibers in Figure 15C seem to be a part of one large bundle. The phenomenon of fiber 

bundling is a quantified by the decay of local orientational order, which is plotted for each 
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image in Figure 16. The combination of poor co-solvent addition, sonication and aging, 

Figure 15A and Figure 16A, shows a steep drop in S2D, with a decay length of 474 nm 

and a final Sfull of 0.18. S2D is still decreasing at 5 µm – the last point has a value of 0.13, 

indicating nearly random long-range orientation. In comparison, the sonicated and aged 

sample and the microfluidic processed sample have decay lengths of almost 1µm and Sfull 

of 0.44 and 0.8, respectively. The increased decay length is indicative of the local fiber 

bundling that we observed. 

The differences in local order in these samples can be attributed to differences in 

the self-assembly mechanism of P3HT nanofibers, as depicted in the diagrams in Figure 

16. While it is widely known that π-π-stacking of individual P3HT chains causes the 

formation of these fibers, what is less well known is how fibers interact with one another, 

especially when considering the polydispersity of P3HT.33,50 The longest chains in the 

molecular weight distribution create fringes that extend beyond their host fibers’ edges. In 

a poor solvent, these fringes would be expected to coil up so as to decrease their interaction 

with the solvent and thus their interaction with other nearby fibers. In a solvent such as 

chloroform, the fringe chains can extend to create strong physical interactions between 

parallel neighbors, such as tie chains and contact points.34 In the most extreme case of 

microfluidic processing, the formation of shish-kebab nuclei is a well-documented 

crystallization mechanism that may create strongly interconnected parallel fibers, leading 

to the high degree of orientational order at a wide range of length scales.102–104 The fact 

that these films were all spin-coated under similar conditions indicates that order formed 

in solution can persist through the spin-coating process, despite the high shear rates and 

rapid solvent evaporation that occur. 
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2.3.2 The Effect of Deposition Method on Morphology 

This is not to say that the spin-coating process has no effect on fiber orientation; to 

investigate, we prepared a solution of P3HT nanofibers in chloroform by sonicating and 

aging two days, spin-coated it onto a glass slide, and collected AFM images of the 

morphology at varying locations around the center of spin-coating, noting the (x,y) position 

of the AFM stage in the Nanoscope software. The results are depicted in Figure 17, in 

which the average orientation of each image is plotted as a line segment at the location 

where each image was taken, and the line segment is scaled by the full-frame value of S2D 

for that image. There is a radial component to the orientations, which would be expected 

given the strong centrifugal forces present during spin coating. However, the orientations 

also have a bias in the direction of initial angular acceleration, which suggests that the 

solidification of the film occurs before a steady-state radial flow profile can develop. These 

results are in agreement with other studies that suggest colloidal rods align with centrifugal 

flow fields when they are present at a high enough volume fraction.105 Given the extensive 

use of spin-coating in solution processing, high-throughput image analysis of the effect of 

its fluid dynamics could be a valuable tool for understanding and controlling deposition 

using this technique.  
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Figure 17 – The effect of spin coating on fiber alignment. (A) Original tapping mode 
phase image (10 x 10 µm) from one location. (B) Orientation distributions for 
accompanying image. (C) Map of average fiber orientation as a function of image 
location on final spin-coated film (30 x 30 mm). The center of the original droplet is 
taken to be the origin. Spin direction was counter-clockwise. 

Shear-coating with micro-patterned blades has received a fair amount of attention 

as a mechanism to align polymer chains.106–108 However, when coating solutions of pre-

formed nanofibers, simpler blade designs can be used to achieve macro-scale alignment 

and enhanced charge transport. Chang et al. obtained aligned films of P3HT and poly(3-

butylthiophene) nanofibers by using a glass cover slip as the shearing device, and growing 

nanofibers using the previously described UV irradiation technique. The degree of 

alignment was tunable by the coating velocity, as illustrated in Figure 18a–e.109 Exciton 

bandwidth, (100) d-spacing, fiber alignment, and mobility were optimized at intermediate 

coating rates between 1–2 mm/s. The coating velocity likely modulated the film thickness 

as well, which can play an important role in the measured charge transport.110 
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Figure 18 – The effect of blade coating parameters and solution aging on fiber 
alignment. (a–d) AFM tapping mode phase images (4 µm) of thin film morphology 
resulting from slide coating solutions of UV-irradiated P3HT nanofibers at various 
coating velocities. (e) Image order parameter Sfull as a function of coating velocity for 
images a–d. (f) Image order parameter Sfull as a function of solution aging time in 
images g–j. (g–j) AFM phase images (5 µm) of thin film morphology resulting from 
blade coating solutions of P3HT in which nanofibers were formed through UV 
irradiation and aging. Coating direction was horizontal in all images. 

A similar study by Chu et al. demonstrated that mobility of up to 0.2 cm2/Vs could 

be obtained by combining UV irradiation, aging, and blade coating at 3 mm/s.48 The 

evolution of morphology and alignment are shown in Figure 18f–j. As aging proceeded, 

alignment increased, as measured by Sfull from AFM images and the dichroic ratio of the 
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0–0 transition peak from UV-vis spectra. It is possible that as fibers increased in length and 

number, entropic constraints forced them into greater alignment. Interestingly, anisotropic 

mobility was observed when measured parallel and perpendicular to the coating direction. 

Mobility was higher perpendicular to the coating direction, indicating that paths along 

P3HT chain backbones were more favorable than along π-π stacked fibers. The ability to 

precisely control fiber alignment should enable new developments in the theory of fibers 

under shear flow as well as charge transport in semi-crystalline thin films.59,111 

2.3.3 Structure-Property Relationships 

Thus far, we have focused primarily on the process-structure relationships 

governing P3HT nanofiber formation and deposition. These experimental efforts were 

largely aimed at achieving higher field effect mobility. However, many factors influence 

the measured mobility in a given OFET beyond the thin film microstructure of P3HT, as 

detailed in Appendix C. In examining the structure-property trends observed in our OFET 

fabrication efforts, it is important to provide context on the processing and device 

architecture decisions that were made. Table 1 compiles the process and performance 

information for the highest mobility devices from recent studies in the Reichmanis group. 

We can infer that differences in electrical performance are due largely to 

differences in the thin film microstructure because our other processing decisions have 

remained largely consistent. All device substrates are bottom-gate, bottom-contact with an 

unmodified 300 nm SiO2 dielectric, gold source and drain electrodes and a 50 µm channel 

length and 2000 µm channel width. Spin coating was performed in air at 1500 rpm for 60 

seconds. Saturation regime transfer curve models were used in most cases. Almost every 
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study included an overnight vacuum step for solvent removal at either room temperature 

or 50 °C. It is important to note that the number average molecular weight (Mn) of P3HT 

used varied between 20 and 41 kD. While early studies indicated a strong dependence 

between molecular weight and mobility,35 this was due in large part to the lack of inter-

grain connectivity in samples with Mn < 20 kD.36,112,113 Our devices fall into the regime of 

interconnected aggregates, thus the differing molecular weights have a more limited 

impact. These are simply factors to keep in mind while comparing the performance of the 

processes under examination. 

Table 1 – Top performing devices by processing regimen. aPolydispersity Index. 
bRegioregularity. cInitial concentration of polymer solution. dDeposition method: 
Spin = spin coated; Slide = slide coated; Blade = blade coated. eChannel length. f2-
methylpentane. 

Author 

Year Parameters 
Studied 

Mn 
(kD) 

PDIa RRb 
(%) 

Solvent Init. 
Conc.c 

(mg/mL) 

Depo.d Annealing 
Time / Temp. 
(°C) / Vacuum 

Transfer 
Curve 
Model 

µ 
(cm2/V

s) 
Chu48 2016 Aging 41 2.2 96 CHCl3 5 Blade 12h / 25 / Vac Saturation 0.2 

Chang109 2016 Blade 
Velocity 

41 2.3 96 CHCl3 5 Slide 10m / 120 Linear 0.2 

Wang83 2015 Microfluidic 
flow rate 

20 2.2 96 CHCl3 5 Spin 12h / 25 / Vac Saturation 0.16 

Kleinhenz55 2016 Sonication, 
Aging 

32 2.2 96 CHCl3 5 Spin 12h / 50 / Vac Saturation 0.15 

Chang88 2014 Sonication, 
UV 

20 2.2 96 CHCl3 5 Spin 12h / 25 / Vac Saturation 0.12 

Choi80 2014 Sonication, 
Solvent 

41 2.3 96 CHCl3 / 
2-MPf 

5 Spin 12h / 50 / Vac Linear 0.1 

Aiyar89 2011 Sonication 31 2.0 98 CHCl3 3.5 Spin  Saturation 0.03 

 

 Figure 19 demonstrates a linear correlation that arose between mobility and fiber 

alignment (Sfull) when data from two different experiments was analyzed with GTFiber.114 

In the first experiment, fibers were generated through sonication and aging and deposited 

via spin coating, and in the second experiment, fibers were generated through UV 

irradiation and aging and deposited via blade coating. Alignment increased with aging time 

in both cases, although the sonicated fibers were aged for six days, and the UV irradiated 

fibers were aged for only one day. Spin coating led to higher structural variance, which 
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was quantified by collecting three images from each device. Note that the sonicated and 

spin-coated films only achieve alignment up to Sfull = 0.5. Even with a blade coating 

procedure, higher alignment was unachievable with sonicated fibers. This is likely due to 

their limited length; the relationship between length and alignment is explored further in 

Chapter 3. 

The relationship between fiber alignment and mobility considers only fibers coated 

with their overall orientation perpendicular to charge transport, as illustrated in Figure 19c. 

This meant that the transistor channel was placed north of the center of spin coating, as 

follows from Figure 17, and in blade coating, the blade was drawn along the electrode 

width, yielding the fiber orientation shown at right in Figure 19c. This distinction is 

important for highly aligned structures because of their observed charge transport 

anisotropy. Aligning fibers perpendicular to the electric current allows charges to utilize 

chain backbones more than π-π stacks to travel across a film, requiring less use of the 

slower hopping mechanism. The linear nature of the correlation may be attributed to 

decreased bending angles in bridging chains traveling between fibers, illustrated most 

clearly by the theoretical results from MD + DFT simulations performed by Lan and 

Huang, reproduced in Figure 19d.34. P3HT is a relatively rigid polymer because its 

planarizing dihedral angles are most energetically favored. In low alignment films, the 

presence of bridging chains is highly unlikely. However, in films with moderate alignment, 

or in films with a higher decay length of orientational order, bridging chains and crossing 

points are more likely to occur. Near-perfect alignment may reduce the bending angles of 

bridging chains and crossing points, which results in greater backbone planarization and 

thus higher mobility charge transport. 
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Figure 19 – Correlation between mobility and Sfull, the image-based order parameter 
for in-plane fiber alignment. (a) Results from sonication, aging, and spin coating 
study. (b) Results from UV, aging, and blade coating study. (c) Schematic of charge 
transport in low and high alignment structures. (d) Relationship between P3HT 
backbone torsion angle and intra-chain mobility from DFT simulations by Lan and 
Huang. Adapted with permission from Ref. 34. Copyright 2009 American Chemical 
Society. 

The limitations of this relationship should be noted: these are images of the thin 

film surface rather than the buried semiconductor/dielectric interface (although a 

correlation between the two is demonstrated in Chapter 3), and they have been collected 

at length scales varying from 5 – 10 µm. Nonetheless, it is an informative relationship that 

reflects the progress our group has made in controlling the crystallization and alignment of 

P3HT nanofibers, and the positive impact that has had on device performance. In general, 

however, an outstanding value of a single structural parameter is a necessary but not 
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sufficient criterion for high mobility. Performance will be maximized only when all 

structural properties are optimized, including a low thin film exciton bandwidth, large 

(100) grain size and smaller d-spacing, Herman’s orientation factor indicating edge-on 

orientation, and a tightly packed and aligned fibrillar morphology. 

2.3.4 Extensibility of the Relationships 

There is every indication that the theory and methods introduced in this protocol 

are extensible to the broader class of semicrystalline conjugated polymers beyond P3HT. 

Analogues and copolymers of P3HT have proliferated, especially in the design of donor 

species for organic photovoltaics. With the intention of increasing open circuit voltage, 

Bronstein et al. added thiazole units to polythiophenes, resulting in deeper HOMO 

levels.115,116 Heeney et al. synthesized a selenophene-based analogue with a reduced band 

gap but a HOMO level similar to P3HT,117 as well as a selenophene-diketopyrrolopyrrole 

co-polymer displaying ambipolar performance in transistors.118 Work by the Thompson 

group includes the side-chain engineering of P3HT to control both open circuit voltage and 

surface energy.119,120 Some of these analogues have been shown to form the same fibrillar 

structures as P3HT,121,122 indicating that nucleation, growth and alignment strategies could 

be beneficial to the control of charge transport in these polymers, as well as the control of 

morphology in organic photovoltaics. Blending conjugated polymers with insulating 

polymers is another attractive strategy to reduce raw material usage while maintaining 

charge transport and improving barrier properties;123 as such, sonication, UV irradiation 

and blade coating have been demonstrated on blends of P3HT with polystyrene124,125 and 
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poly(dimethylsiloxane)126 with similar aligning effects and improvements in charge 

transport. 

Extending these relationships beyond semi-crystalline polythiophenes and their 

structural analogues is trickier. More recently synthesized, higher performance conjugated 

polymers display only short-range aggregation, as opposed to the vivid fibers of 

P3HT.30,127–129 While this further strengthens the theory that P3HT fibers serve more as 

hubs that link chains rather than conduits for charge transport, it also means that the local 

and long-range orientational order of newer conjugated polymers is more difficult to 

quantify through imaging. VASE and NEXAFS measurements have been used to quantify 

interfacial orientation distributions of conjugated polymer backbones, but they cannot 

provide information on the spatial correlation of orientations.128 For this purpose, Dark 

Field TEM with hyperspectral backscatter has been used effectively with PBTTT, 

demonstrating that a low angle between neighboring grains is beneficial to charge transport 

– although a quantitative metric like those presented here was not defined.130 

As process scale-up for organic electronics manufacturing becomes a stronger 

focus of research, precise control of electronic properties such as mobility will be necessary 

to meet tight performance specifications. Crucial questions to be answered include: what 

are the principal sources of variance in mobility for devices that were otherwise processed 

identically? In what stage of processing is the greatest amount of structural variability 

introduced, and can it be mitigated? Even for the emerging class of high-performance 

conjugated polymers with weaker π-π stacking interactions, long-range alignment is likely 

to induce charge transport anisotropy, which will be important to control in device 

applications.128  
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2.4 Conclusions, Chapter 2 

 An automated image analysis protocol has been detailed for use with images of 

fibrillar morphologies. Each step of the processing and analysis has been characterized: 

anisotropic diffusion filtering, top hat filtering, thresholding, skeletonization, and 

orientation mapping, followed by analysis of the orientation distribution and decay of 

orientational order. This combination of processing and analysis builds off of previous 

work in other fields, however it is unique in its robustness to noise and low-contrast images, 

which are sometimes unavoidable with AFM. The analysis workflow was implemented as 

a standalone application for Mac OS or Windows, giving readers with no computational 

experience the ability to implement this procedure and to explore the effect of each image 

processing parameter on their own images. Recommendations are provided for each 

parameter setting corresponding to physical feature sizes: orientation smoothing should not 

exceed fiber width, while top hat filter size should exceed fiber width. Diffusion time 

should be set between one and ten “seconds.” 

 Quantitative analysis of morphology can be accomplished with three primary tools: 

average orientation, decay length, and Sfull. Average orientation can be used to capture the 

direction of anisotropy of a population of fibers, which is frequently observed with flow- 

or strain-oriented samples. It was used in this chapter to elucidate the orienting effect of 

the spin-coating process on P3HT morphology. Decay length and Sfull can be used to 

describe the decay of orientational order as well as its long-range asymptotic value. These 

parameters are used to quantify the differences in fiber bundling caused by different 

solution pre-processing methods: sonication and aging as well as microfluidic pre-

processing create enhanced local orientational order that is maintained through the spin-
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coating process, while sonication and aging in the presence of a poor co-solvent does not. 

Mechanistic hypotheses for these phenomena can be formulated by combining this analysis 

with the literature on conjugated polymer crystallization. While this technique was 

demonstrated on P3HT-based materials, the introduction of this software should bring a 

valuable level of quantification to the analysis of process-structure-property relationships 

in any fibrillar system. The software is available for download at [gtfiber.github.io]. 

 Finally, a linear correlation between Sfull and mobility was demonstrated. This 

correlation holds so long as overall fiber orientation is perpendicular to charge transport. It 

is likely due to increased inter-grain connectivity, and also the specific nature of inter-grain 

connectivity. As fibers come into near-perfect alignment, so too do the bending angles of 

tie chains between neighboring grains. The energetic favorability of this conformation 

reduces charge traps, allowing for freer motion of charge carriers through the film.  
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Chapter 3. Packing, Defects, and Growth 

Mechanisms in Conjugated Polymer Nanofibers 

Evaluated by High-throughput Image Analysis 

In the previous chapter, the image processing strategy behind GTFiber was 

introduced, then used to analyze orientational order in a variety of fiber packing scenarios. 

However, the data presented was relatively limited and was used primarily for illustrative 

purposes. Additionally, fiber length was excluded from the analysis because of the 

difficulty of reliably extracting it. A key difference between the image analysis approach 

in this chapter versus that of the previous chapter is vectorization. In GTFiber 2.0, the 

fibrillar structure is still skeletonized, but the skeleton is then broken into smaller segments, 

fitted with vectorized contours, then reconstructed, permitting the measurement of fiber 

length. It is shown that fiber length is an additional crucial factor in the process-structure-

property relationships for P3HT, with a strong relationship to alignment and packing 

defects. Some details on the orientational order parameters from the previous chapter are 

repeated here for completeness. 

3.1 Introduction 

Conjugated polymers are driving a revolution in printable electronics. These 

mechanically flexible, semiconducting materials are being incorporated into devices 

ranging from solar cells to biosensors.6,11,14 Conjugated-polymer-based organic field effect 

transistors (OFETs) are on the brink of commercial viability for use in flexible display 
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applications.18 Enabling these advances is a growing fundamental understanding of the 

process-structure-property relationships governing conjugated polymer thin films. While 

novel synthetic conjugated polymers continue to push the boundaries of performance, 

greater control of the processing of classical semi-crystalline polymers has led to a refined 

understanding of polymer crystallization, assembly, and long-range 

microstructure.50,128,131,132 Recent progress by our group in controlling the nucleation, 

growth and alignment of poly(3-hexylthiophene) (P3HT) nanofibers in OFET devices has 

produced a rich library of images of fibrillar morphologies containing valuable information 

on the microstructural evolution of conjugated polymer thin films.48,55,80,83,109,133 Analysis 

of these morphological images presents challenges in image processing and computer 

vision, structural order parameter identification, and data visualization. We present 

solutions to these problems here as part of an update to GTFiber, our open-source 

application for the automated segmentation and analysis of images of fibrillar materials. 

We then discuss the process-structure-property relationships learned from analyzing over 

100 images of polymeric transistor morphology spanning a wide range of solution 

processing techniques. 

Extraction and analysis of fibers from images has received sporadic attention over 

the past two decades, but is becoming more relevant due to a significant uptick in research 

on fibrillar materials and composites, including carbon nanotubes,70 cellulose and other 

bio-based fibers,134 self-assembling biological systems such as amyloid fibers,135 and the 

present case of conjugated polymer nanofibers.50,136,137 Images of fibers are highly diverse 

and their analysis can be approached in different ways. When the number of fibers to be 

analyzed is low, manual tracing is the most effective method of extraction. This approach 
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has been greatly improved by FiberApp, a MATLAB-based software package that fits 

vectorized contours to fibers provided that the user clicks on multiple points along each 

fiber’s backbone.74 However, this approach becomes impractical as the number of images 

and the number of fibers per image increases. In the closely related problem of worm 

behavioral analysis, a machine learning approach was used effectively as part of the 

WormToolbox in the CellProfiler software package.71 This approach requires the 

generation of a large training set of manually traced worms (fibers), and assumes that 

worms will conform to the trained distributions of length, width, and curvature. An 

alternative method that yields accurate, useful results with little or no manual tracing is a 

heuristic skeletonization and network analysis approach, employed by both ADAblock for 

block copolymer analysis and FIRE, a package for collagen fiber analysis.66,72,73 In 

previous work, we introduced a similar heuristic skeletonization algorithm capable of 

analyzing bulk orientational order in images of fibrillar materials, but it did not extract and 

vectorize individual fibers, limiting its measurement capabilities.114 

GTFiber has been updated to integrate the previous skeletonization approach with 

the fiber fitting and analytical algorithms from FiberApp, yielding a robust and accurate 

image analysis workflow, complete with a user-friendly standalone application for both 

Windows and Mac [gtfiber.github.io]. In the updated image processing scheme, images are 

de-noised and enhanced using an anisotropic diffusion filter, then thresholded and 

skeletonized. Isolated skeletal segments are fit with the Active Contours algorithm, then 

reconstructed using a scored segment-matching algorithm. The result is a software package 

that produces rapid, detailed measurements and helpful structural visualizations without 

the need for manual tracing. 
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In previous studies, we used our image analysis protocol to examine the relationship 

between thin film deposition method and orientational order, quantifying both the radial 

alignment inherent to the spin-coating process and the linear aligning effect of blade 

coating on P3HT nanofibers, as well as the relationship between fiber alignment and charge 

carrier mobility.114,138 Many techniques to induce the nucleation and growth of P3HT 

nanofibers have been previously reported: heating/cooling cycles, mixed solvent 

approaches, simple aging and shear-induced growth techniques are some notable 

examples.38,41,49,104 Here, sonication, poor solvent addition, UV irradiation, microfluidic 

processing and aging are all explored for their quantitative effect on fibrillar morphology, 

revealing a complex but highly tunable design space. Three order parameters are sufficient 

to capture the structural variation in this space: global alignment (Sfull), fiber length density 

(rFL), and the decay length of orientational order (lC). These structural parameters are 

illustrated through visual examples relating them to different processing techniques. 

Furthermore, a web-based interactive data visualization is introduced for datasets of 

structural imagery. 

Finally, given recent progress in obtaining macroscopically aligned fibers by 

multiple groups,48,109,139 we perform a detailed analysis of fiber packing in highly aligned 

thin films at both the air and substrate interfaces. We show that perfect alignment is 

currently limited by packing defects due to shorter fibers that preferentially segregate to 

the substrate interface, as well as local nano-scale curvature along the backbone of P3HT 

nanofibers. A self-assembly mechanism is proposed that reconciles both the nanofiber 

curvature and the log-normal distribution of fiber lengths inherent to populations of P3HT 

nanofibers. We expect these software tools and results to be of interest specifically to the 
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organic electronics community and more broadly to researchers working on fibrillar 

materials and composites of any kind. 

3.2 Materials and Methods 

3.2.1 Materials 

 Regioregular poly(3-hexylthiophene) (P3HT) was obtained from Rieke Metals. 

Number average molecular weight (Mn) ranged from 17 kD to 40 kD, with polydispersity 

between 2.0 and 2.2. Regioregularity was greater than 96%. Chloroform (stabilized with 

amylenes) and 2-methylpentane (anhydrous) were obtained from Sigma-Aldrich. 

3.2.2 Solution Processing 

Solutions were prepared at 5 mg/mL by dissolving 10 mg of polymer in 2 mL of 

chloroform (Sigma) in 20 mL borosilicate glass vials, tightly capped, and heated to 60 ºC 

for 25 minutes on a hot plate (Corning) to ensure complete dissolution. After cooling at 

ambient conditions for five minutes, the solutions were subjected to one or several of the 

following treatments: for sonication, the solution vial was dipped in a bath sonicator 

(Bransonic 2510, 40 kHz, 130 W) filled with tap water for two minutes. For UV irradiation, 

the solution vial was placed on top of a handheld UV lamp (Entela UVGL-15, 5 mW cm-

2, 254 nm) which was placed on top of a magnetic stirrer (Corning), and the solution was 

irradiated for 8 minutes while being stirred at 300 rpm. For poor solvent addition, 2-

methylpentane was slowly added to the solution of P3HT and chloroform at concentrations 

ranging from 0 – 40 vol%. For aging, the treated solution was capped, wrapped with 

parafilm, and placed in a dark drawer for the specified amount of time. Microfluidic 



 60 

processing involved pumping the prepared solution through a PTFE tube (300 µm i.d.) with 

a syringe pump at a flow rate of 1 mL/min; the tube passed through an ice bath (residence 

time 1s) and a zone under UV irradiation (residence time 10s) before exiting to a collection 

vial for deposition. 

3.2.3  OFET Device Fabrication 

 OFET devices with bottom-gate, bottom-contact architecture were fabricated for 

the electrical characterization of thin films deposited from the as-prepared solutions. 

Highly n-doped silicon wafers with a thermally grown 300-nm SiO2 dielectric layer were 

used as the substrate. Source and drain electrodes were patterned by a photolithography 

lift-off process in a cleanroom environment, and deposited by E-beam evaporation (Denton 

Explorer) of 50 nm of Au with 3 nm of Cr as the adhesion layer. The device substrates 

were rinsed with acetone, methanol, and isopropanol, sonicated for 15 minutes in acetone, 

and cleaned for 30 minutes in a UV-ozone cleaner (Novascan PSD-UV) to remove residual 

photoresist and other organic contaminants. 

Thin film deposition was carried out via spin coating (WS-650MZ-23NPP, Laurell) 

of a 15 µL droplet at 1500 rpm for 60 s, or blade coating at a velocity of 3 mm/s. Blade 

coating was conducted on a motorized linear stage (A-LSQ150A- E01, Zaber) equipped 

with a vacuum chuck, with the blade perpendicular to the substrate at a gap height of 5 µm. 

A 4 µL volume of fluid was injected into the blade gap and allowed to wick the width of 

the blade fully before coating. Coated thin film devices were stored overnight under 

vacuum before any characterization was performed. 
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3.2.4 Electrical Characterization 

Individual OFET channels were tested in a nitrogen-filled glovebox using an 

Agilent 4155C semiconductor parameter analyzer. The field-effect hole mobility (µ) was 

calculated in the saturation regime of transistor operation (VDS = -80 V) by fitting the 

following equation to a plot of drain current (VD) versus gate voltage (VG): 

 𝐼"# =
𝑊𝐶'(
2𝐿 µ 𝑉- − 𝑉/0 1 (3) 

where W (2000 µm) and L (50 µm) are the transistor channel width and length, respectively, 

Vth is the threshold voltage, and COX is the capacitance per unit area of the SiO2 dielectric 

(1.15 ´ 10-8 F/cm2). 

3.2.5 Atomic Force Microscopy 

 Thin film surface morphology was characterized with a Bruker Dimension Icon 

atomic force microscope operating in tapping mode with n-type silicon tips (HQ:NSC14-

noAl, 5 N/m, 160 kHz, MikroMasch). Images were collected predominantly at a 5 µm scan 

size with 512 samples per line at 1 line/s, but some images were collected at 2, 4, 7, and 10 

µm scan sizes as well. Increased drive amplitudes frequently yielded higher contrast 

between the fiber and amorphous phases in the phase channel. Approximately 3–5 images 

could be obtained per tip before loss of image quality due to tip degradation and polymer 

adsorption. 
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3.3 Image Data and Analysis 

3.3.1 Solution Processing and Thin Film Deposition 

 The solution processing methods and raw data considered in this study are 

illustrated in Figure 20. The images in Figure 20b-e are AFM tapping mode phase images 

taken from thin films of regioregular P3HT. The fibrillar regions are π-π-stacked 

crystallites that are dispersed in an otherwise disordered matrix; film thickness ranges from 

20–50 nm. Solutions of P3HT (Mn ranging from 20 – 41 kD) in chloroform were prepared 

at a concentration of 5 mg/mL in all cases. Nanofibers were nucleated using either UV 

irradiation or sonication, resulting in the appearance of small fiber nuclei, as seen in the 

blade coated film shown in Figure 20b. Further growth was promoted by either allowing 

solutions to age or by addition of a poor co-solvent, in this case 2-methylpentane. Figure 

20c shows a thin film morphology after a sonicated solution was aged for two days and 

blade coated. Nucleation and growth were combined in a single microfluidic flow system 

through a cooling and UV-assisted growth step, with the resulting morphology shown in 

Figure 20d after spin coating. Finally, a highly aligned morphology is shown in Figure 

20e, the result of blade coating a solution processed with UV and aged for two days. Further 

details on the processing methods are available in the Methods section or in the papers that 

introduced them;48,80,83,88–90,133 their nucleation and growth mechanisms were reviewed as 

well.138 
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Figure 20 – Processing of P3HT nanofibers and progression of fibrillar morphologies 
as observed in 5 µm AFM phase images. (a) Illustrations of solution processing and 
thin film deposition methods considered in this study: UV irradiation and sonication 
induce nucleation, while aging and poor solvent addition lead to extended growth. 
Nucleation and growth are combined in a microfluidic-cooling-UV system. Thin film 
deposition methods considered include spin coating and blade coating. (b) Small fiber 
nuclei after sonication. (c) Longer fibers formed after aging a sonicated solution for 
two days. (d) Densely packed fibers formed in the microfluidic process and deposited 
by spin coating. (e) Highly aligned fibers formed by UV irradiation and two days of 
aging followed by blade coating at 3 mm/s. 

 The morphological space spanned by the above processing methods is highly 

diverse: the four images presented in Figure 20 give some idea as to the range of fiber 

lengths, packing densities, and orientation order present in this system, but qualitative 

observations from raw images are insufficient to convey and quantify the process-structure-

property relationships present in this material system. Morphological imagery was 

available from 137 unique samples: 33 images sourced from previously published studies 

and the remaining 104 consisting of either previously unpublished data or samples 

fabricated specifically for this study to fill out the process parameter domain as well as the 

morphological space. Image sizes range from 2 to 10 µm, but most of the analysis in this 

study is limited to 5 and 7 µm images to ensure consistency in structural measurements, 
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which brings the dataset down to an even 100. To obtain a satisfying analysis, it is 

necessary to extract fibers and quantify their length distributions, packing behavior and 

orientational order in terms of structural order parameters. We begin by outlining the fiber 

extraction and analysis procedure developed for this study and implemented in the GTFiber 

software package. 

3.3.2 Image Processing 

 Starting from the phase channel of a tapping mode AFM image taken from a P3HT 

thin film, an image is processed through an anisotropic diffusion filter (Figure 21b), an 

adaptive thresholding step (Figure 21c), and a skeletonization step (Figure 21d). This 

sequence was used to analyze bulk orientational order, as detailed in a previous protocol.114 

However, measuring fiber counts, lengths, and packing density, among other properties, 

requires the vectorization of individual fibers; that is, identifying which pixels belong to 

the same fiber, and converting those pixels into a string of vectors, referred to as a contour. 

This is the approach used in FiberApp,74 in which users manually select points from which 

contours are initialized. Here, we provide an initial guess for our contours by breaking the 

skeletonized image into isolated, unbranched strings of pixels (segments) and feeding those 

segments to the Active Contours algorithm as illustrated in Figure 21e. This algorithm is 

discussed in detail in Appendix B. 
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Figure 21 – Extraction and vectorization of fibers from an AFM image using 
GTFiber. (a) A typical AFM phase image of P3HT nanofibers, (b) Result of 
anisotropic diffusion and top hat filtering, (c) Result of adaptive thresholding, (d) 
Result of skeletonization and fringe removal, (e) Fitting vectorized contours to the 
unbranched skeletal segments using Active Contours at a 30 nm step length, (f) Line 
plot of the vectorized segments, (g) Illustration of segment matching and fiber 
reconstruction, (h) Line plot of vectorized fibers in which each fiber is assigned a 
random color to evaluate classification accuracy. 

 Overlapping fibers or fibers with adjacent ends tend to be combined into larger 

branched areas of the skeleton, so after breaking the skeleton into unbranched, vectorized 

segments, these segments must be reconstructed into linear fibers, illustrated in Figure 

21g. Segments whose endpoints are close to one another are matched based on two user 

specified criteria: the maximum tolerable gap between the segments and the additional 

curvature created by stitching them together. Two segments are matched if the gap between 

their endpoints is less than the maximum gap, and if stitching them does not introduce 

significant additional curvature to their contours. Two matches are shown with green 

arrows in Figure 21g. 
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 The result of this sequence of image processing steps is represented by Figure 21h, 

an image of the vectorized fibers in which each fiber is represented by a different random 

color to demonstrate the performance of the reconstruction. While reconstruction is never 

a perfect process, strong visual agreement between the original image in Figure 21a and 

the vectorized representation in Figure 21h indicates that the segmentation and 

vectorization were effective. To quantify the accuracy of the algorithm, manually traced 

images were used to train the image processing parameters of GTFiber, presented in 

Appendix B. With properly selected parameters, GTFiber yields bulk structural 

measurements within 10% of their true values. The initial analysis in this study is focused 

on broad trends across the entire dataset, which are insensitive to image processing 

parameter selection. The more detailed results, especially those concerning fiber length, 

were confirmed with manual tracing and are presented with uncertainty quantification. 

Appendix B contains a complete discussion of accuracy, sensitivity, failure modes and 

limitations of the software, as well as a guide to the user interface and parameter selection.  

3.3.3 Structural Visualizations and Order Parameters 

 Extraction of vectorized fiber backbones permits the calculation of several 

structural order parameters, as introduced in Chapter 2. Besides fiber length and width 

distributions, fibrillar structures can be characterized by their full-image-scale alignment 

(Sfull), fiber length density (rFL), and the decay length of orientational order (lC). The order 

parameters are illustrated in Figure 22. Each image is plotted in terms of Sfull and rFL in 

Figure 22b and in terms of Sfull and lC in in Figure 22c, colored according to their solution 

processing method and shaped according to their deposition method. Representative 
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examples from each plot are shown in Figure 22d-j as false-colored Orientation Maps, in 

which the color of each fiber indicates its in-plane orientation as labeled on the attached 

color wheel in Figure 22d. Since fibers are vectorized at a 30 nm (3 pixel) step length, the 

orientation, and thus the color, varies along the length of each fiber. The Orientation Map 

makes the high-resolution AFM images readable even at small printed sizes, and helps to 

visually identify oriented domains of fibers. 

Fiber alignment (Sfull) and decay length (lC) are both extracted from a plot of 

orientational order calculated at increasing length scales, as illustrated in Chapter 2 and 

Appendix B. Sfull (for “full-image alignment”) captures the alignment of fibers in an image, 

regardless of their orientation or packing density. Figure 22d, e, g and i provide examples 

of low alignment structures, while Figure 22f, h and j are examples of high alignment 

structures. Unlike Herman’s Orientation Factor, used for analysis of orientation in X-ray 

scattering, Sfull has a minimum value of 0, indicating isotropic orientation. 
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Figure 22 – Processed images of fibrillar morphologies and their coordinates in the 
space defined by the order parameters Sfull, rFL, and lC. (a) Schematic illustrating 
fiber packing arrangements typical of low and high values of the three structural 
order parameters. (b) The complete structural image library plotted in terms of Sfull 
and rFL, with solution processes coded by color and deposition methods coded by 
shape. (c) Image library plotted in terms of Sfull and lC. (d-j) Orientation Maps 
extracted from raw images at extreme values of each order parameter, with their 
location in each plot indicated by a gray pointer. Each image is 5 µm, and colors 
correspond to the in-plane orientation of each fiber’s backbone, as indicated by the 
attached color wheel in d (i.e. red is horizontal, cyan is vertical). 

The decay length (lC) captures local alignment behavior. For example, in Figure 

22e and f, fibers appear in large aligned bundles even if the overall structure is not fully 
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aligned – this is characteristic of a high decay length. By contrast, Figure 22i and j 

represent structures with low decay length and low and high overall alignment, 

respectively. In these cases, colors are more evenly distributed across the images, meaning 

that fiber orientation is more evenly distributed. In an image with low decay length, fibers’ 

orientations are not as strongly influenced by that of their neighbors. With low decay length 

and high alignment (Figure 22j), alignment is disrupted only by local defects such as the 

isolated horizontal red fibers, rather than by long range variations in orientation as seen in 

Figure 22f. 

Fiber length density (rFL) captures the packing density of fibers and is defined as 

the total length of fibers per unit area. Its calculation is illustrated in Appendix B. It is 

similar to the volume fraction of fibers but is not influenced by their width. Examples of 

low length density are shown in Figure 22g and h for low and high alignment, respectively. 

By contrast, high length density with low alignment is represented by Figure 22d. 

Achieving high length density with low overall alignment generally requires short fibers 

packed in tight, locally aligned bundles. High density and high alignment is well 

represented already by Figure 22j. Intuitively, images with more color than black have 

higher fiber length density. 

Interestingly, thin films of P3HT nanofibers tend to have spatially homogeneous 

fiber length density – that is, films are rarely observed in which tight bundles of fibers are 

accompanied by large voids. This likely indicates that fiber packing in thin films is dictated 

by entropic constraints. When fiber length density is homogeneous, it is inversely 

correlated with average inter-fiber spacing; this can be useful when trying to estimate the 

feasibility of inter-grain tie chains. For example, in a film where rFL = 10 µm-1, the average 
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inter-fiber spacing would be 100 nm. For P3HT chains with Mn = 40 kD, an average chain 

has a fully stretched contour length of 92 nm (assuming repeat unit MW = 166 g/mol and 

length = 0.38 nm), indicating that an average chain in this example could indeed bridge the 

gap between neighboring fibers. This is quantified more rigorously in a later section. 

Fiber length and width distributions, while not technically structural order 

parameters, are also calculated as part of the fiber vectorization process. It should be noted 

that mean fiber length as reported here is a number average, rather than a length average. 

Similar to polymer molecular weight distributions, short fibers are more populous by 

number even though more material may be contained in long fibers. Details on the 

calculation of all order parameters and structural metrics are contained in Appendix B. 

3.3.4 Interactive Exploration of Materials Image Datasets 

The image dataset presented in Figure 22 is difficult to fully convey in a static 

figure. As part of this study, we introduce a web-based interactive version of Figure 22b 

and c built with the Bokeh library for Python, illustrated in Figure 23 and available at 

[ZoomImgs.github.io]. When fully zoomed out, the plot looks exactly like those in Figure 

22b and c. However, a user can zoom in on any data point by scrolling, similar to Google 

Maps, revealing the underlying image that produced each data point. The images fade into 

view as the zoom level increases to avoid showing too many overlapping images at once, 

as shown in Figure 23a. Furthermore, when the mouse is hovered over a data marker, a 
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box appears with all of that image’s structural measurements as well as its processing 

information, as shown in Figure 23b. 

 

Figure 23 – Web-based interactive data visualization for materials image data. (a) 
Each data point represents one image; as a user zooms in on the plot by scrolling 
(similar to Google Maps), the underlying image for each data point fades into view. 
(b) Hovering the mouse over a data marker reveals the structural measurements and 
processing information for that image. (c) Comparison of structural order 
parameters and measurements for the two images shown in b. (d) Vectorized fiber 
plot of left structure in b. (e) Vectorized fiber plot of right structure in b. 

This tool can be helpful for understanding the structural metrics used in this study. 

It is also useful for exploring structural libraries: for example, it can reveal similar 

structures obtained by different processing methods: the two images shown in Figure 23b 

have nearly identical structural metrics, but one was processed by sonication, aging, and 

blade coating while the other was processed by UV and blade coating. The two structures 

can be compared by the plots of their vectorized fibers in Figure 23d and e, as well as with 

the table in Figure 23c. In terms of their place in the broader dataset, these structures have 
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relatively high alignment and decay length, low fiber length density, and moderate fiber 

length. These parameters are now explored as they relate to solution processing, deposition, 

and electrical properties of thin films of conjugated polymers. 

3.4 Results and Discussion 

3.4.1 Process-Structure-Property Relationships 

 Figure 22 was intended as a demonstration of the structural variance captured by 

Sfull, rFL, and lC; to investigate trends, each structural metric is plotted as a function of 

solution processing technique in Figure 24, sorted in order of decreasing values of each 

metric. In Figure 24a, it is apparent that UV, aging, and a combination of the two yield 

films with the highest alignment. It is no coincidence that these techniques also yield the 

longest fibers, as evidenced by Figure 24d. In fact, mean fiber length and fiber alignment 

are generally strongly correlated with one another, as can be seen in the correlation heat 

map provided in Figure 24f. This is not simply an artifact of the limited image size: when 

fibers are tracked over periods of aging, they tend to increase in both length and alignment 

when deposited, likely due to the entropic constraints mentioned earlier.48,55 
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Figure 24 – Process-structure-property relationships among the image dataset, 
considering only 5 and 7 µm images. (a-e) Each structural metric across all solution 
processing conditions, sorted in order of decreasing median values of that structural 
metric. Each point represents one image. Slight jitter has been introduced to the x-
coordinate of data points to improve readability in dense regions. Boxes span from 
the 25th to the 75th percentile of each point cloud, with a line at the median. (f) 
Correlation analysis of structural metrics with each other as well as with charge 
carrier mobility, where data was available. Darker green indicates strong direct 
correlation, while darker red indicates strong inverse correlation. 

Another interesting feature of Figure 24 is the inverse correlation between fiber 

width and fiber length density. Microfluidic processing yields substantially higher fiber 

length density than any other process, likely because fiber growth occurs in an oriented 



 74 

flow environment where inter-fiber tie chains are more readily formed, ensuring that fibers 

remain closely packed during deposition.104,108,139,140 Conversely, sonicated solutions result 

in thin films with a consistently low rFL, as well as observably wider fibers, even when 

molecular weight is controlled for (see also Figure 27a). This runs counter to previous 

reports that nanofiber width is correlated with Mn only up to about 20 kD, after which width 

plateaus due to chain folding.57,141 Besides being known as a nucleating agent, sonication 

has been shown to disentangle polymer solutions.85 It is possible that while disentangling 

free polymers with sonication allows them to form crystals with less folds, and thus a wider 

fiber body, it also limits their ability to form inter-fiber tie chains, resulting in greater space 

between fibers and the observably low fiber length density. 

Structure-property relationships are more difficult to infer from this dataset given 

that most images are from the top surface of the thin films, but the structure at these surfaces 

is at least correlated, as demonstrated by previous studies and later in Figure 26. As 

discussed in Chapter 2 and shown again in Figure 24f, charge carrier mobility is most 

strongly correlated with fiber alignment. Perhaps counter-intuitively, this is not because of 

percolation through a large network of fibers; rather, fiber alignment is indicative of 

underlying polymer chain alignment. The fibers simply serve as hubs for charges to find 

the next long polymer chain to travel along.36 This is confirmed by the charge transport 

anisotropy observed in devices with aligned fibers: charge transport is faster perpendicular 

to aligned fibers than parallel to them.48 

The observed correlation between alignment and mobility is the reason for the high 

concentration of highly aligned structures (Sfull > 0.8) produced using UV irradiation, aging, 

and blade coating. These data points reflect the recent progress our group and others have 
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made in obtaining highly aligned nanofibrillar structures with enhanced charge 

transport,48,107,109,124,139,142,143 and are a testament to the repeatability of the process: images 

for this technique were collected by at least four different co-authors of the current study. 

UV, aged, and blade coated films that fall below an Sfull of 0.8 were generally aged for less 

than 24 hours; aging between 24–48 hours has proven to be the optimal process condition. 

However, this begs the question of why alignment seems to reach a maximum around Sfull 

= 0.9. To address this question, we turn to an aspect of polymeric semiconductors that has 

received relatively little attention: defects.58,59 

3.4.2 The Role of Fiber Length 

 Obtaining perfect nanofiber alignment is limited by two factors: packing defects 

and local fiber curvature. To better understand nanofiber packing during thin film 

deposition, we turn back to the strong correlation between fiber length and fiber alignment, 

as shown in Figure 25. It appears that beyond a mean length of 500 nm, high fiber 

alignment is much more likely, especially when using blade coating as a deposition 

method. Blade coating in and of itself is not a guarantor of alignment and consideration 

must be taken for the coating rate and regime of operation,143 but it is worth noting that the 

low alignment outliers are mostly spin coated while the high alignment outliers are blade 

coated. Theoretical treatment of suspended fibers under flow is highly dependent on the 

specific situation. For concentrated colloidal rods at a low Peclet number (ratio of advective 

to diffusive transport rate), it has been observed that higher aspect ratio rods display greater 

alignment.105 While the diffusive properties of P3HT nanofibers are not known, this 
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observation is in general agreement with other studies demonstrating that high-aspect-ratio 

objects align with the flow direction.70,111,144,145 

 

Figure 25 – The relationship between mean fiber length and fiber alignment across 
the entire image library. The gray line is included to enhance readability. 

 Since charge carrier mobility in bottom gate, bottom contact transistors is more 

dependent on the interfacial structure than the top surface, which is more easily captured 

by AFM, an analysis of each surface is presented in Figure 26 for the UV, aged and blade 

coated processing method. Images of the SiO2 interface were obtained by pressing a PDMS 

slab onto P3HT films, submerging the entire stack in DI water for 10 minutes, then peeling 

off the PDMS slab with the P3HT film attached. As tabulated in Figure 26a, the top and 

interfacial surfaces of each sample are correlated, but not equivalent. It has been observed 

previously that thin films composed purely of P3HT nanofibers have roughly identical-
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looking morphologies on the top and interface, but the detailed differences have not been 

quantified.126 

 

Figure 26 – (a) Image analysis results from a sample that was UV irradiated, then 
aged 24h and blade coated, measured at both the air at SiO2 interface by peeling off 
the film. (b) Length distributions from each image, fit with log-normal probability 
density functions. (c-f) Raw AFM images (5 µm each) and colored Orientation Maps 
produced by GTFiber for each sample at each interface. 

Shorter fibers tend to segregate to the SiO2 interface (mean length of 349 vs. 507 

nm), as revealed by the analysis in Figure 26a and b. This was confirmed with three AFM 

images of both surfaces as well as manual tracings. The difference can be rationalized by 

considering settling in a cereal box: the smaller items can create a more dense phase, and 

thus sink to the bottom. In this case, the smaller fibers are likely more mobile as well, 

facilitating their transport to the interface. Unfortunately, short fibers tend to cause defects 

in fiber alignment, evidenced by (a) the defects in the aligned structure in Figure 22j, (b) 

the decreased alignment with shorter fibers at the interface in Figure 26f, and (c) the 

general correlation between fiber length and alignment. Further improvement in mobility 

for pure, regioregular P3HT may be obtained by removing shorter fibers from the 
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population. Simply aging the solution for longer times is not an option, however, because 

macro-scale phase separation and gelation begins to occur after 48h.137,146 Targeting 

crystals of a controlled size is a well-known challenge in crystallization, and will be the 

subject of further investigation.147 

3.4.3 The Mechanistic Origins of Fiber Curvature 

 While short fibers disrupt alignment by creating meso-scale packing defects, an 

additional factor limiting alignment is the simple fact that P3HT nanofibers are not straight, 

rigid crystals. We conclude our analysis by investigating potential self-assembly 

mechanisms that reconcile both the observed length distribution and nano-scale curvature 

of P3HT nanofibers. In Figure 27, cropped sections of 2 µm images (500 nm total width) 

taken from a sonicated and aged sample (Figure 27a) and a UV and aged sample (Figure 

27b) are presented alongside images in which the extracted fiber contours are colored 

according to their local curvature. Calculation of curvature is detailed in Appendix B. 

While P3HT nanofibers appear to be relatively rigid in larger 5 µm images, they have 

significant curvature on a length scale of ~100 nm, sometimes making up to 90 degree 

“turns.” Given the 0.38 nm π-π stacking distance along the fiber backbone, such a turn is 

energetically unfavorable and likely impossible simply by introducing an angle between 
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each chain, or “bending” the fiber as it were. Instead, the growth mechanism of P3HT 

nanofibers offers an alternative explanation. 

 

Figure 27 – Analysis of P3HT nanofiber curvature and its mechanistic origin. (a) 
Cropped section of a 2 µm image taken from the same sonicated, aged and blade 
coated sample as Figure 26c, and a plot of vectorized fiber contours with vertices 
colored according to their curvature. (b) Cropped section of a 2 µm image taken from 
the same UV, aged and blade coated sample as Figure 26e, with the same 
accompanying curvature heat map. (c) Proposed nanofiber growth mechanism and 
accompanying simulation results. Growth is assumed to occur via a 
polycondensation-like route. Collisions between growing segments are assumed to 
occur at a narrow Gaussian distribution of locations along the growth front. Results 
of nanofiber growth simulations under both centered and distributed collision 
assumptions, plotted to scale with chain lengths sampled from a log normal 
distribution corresponding to an Mn of 40 kD and PDI of 2.25. 

As demonstrated by the histograms and fits in Figure 26b, P3HT nanofibers follow 

a log-normal distribution of lengths. The log-normal distribution is typical of a 

polycondensation-like mechanism (minus the release of water here), allowing both chain 

growth (the addition of one chain to a stack), and step growth (the combination of stacks), 

as illustrated in Figure 27c.135 In P3HT nanofiber assembly, the driving force for growth 
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is the physical π-π stacking interaction.148 Perfectly centered growth would be the naïve 

assumption in this case, with each additional chain or stack overlapping the rest of the fiber 

as much as possible (left, Figure 27c). However, this need not be the case, partially because 

π-π stacking acts at the repeat unit level, and partially because of the wide variety of chain 

lengths in a typical polymer molecular weight distribution. Varied chain lengths 

conceivably present a growth front of varied width. If we assume that collisions between 

new chains and stacks are not perfectly centered, and instead follow a narrow Gaussian 

distribution of locations around the center of the fiber’s growth front – so narrow that the 

ends of the fiber are 40 standard deviations from the center – a to-scale simulation of an 

assembled fiber replicates the observed curvature quite accurately. 

In this Monte Carlo simulation, a starting population of chains are sampled from a 

log-normal distribution of chain lengths (Mn=40 kD, PDI=2.25). One-third of these chains 

are immediately combined into nuclei of ten chains each, reflecting the fact that the 

aggregate fraction of P3HT chains measured by UV-Vis absorbance multiplies by a factor 

of ~3 during solution-based fiber growth.48,55 Further nucleation is not considered because 

it is a rare event, as evidenced by the fact that nucleation must be induced in the vast 

majority of processing methods. Each isolated chain and assembled unit of chains is then 

assigned an integer, and at each step of the simulation, two random integers are chosen to 

collide and merge. When a collision occurs, the incoming chain or stack is stacked on top 

of the receiving chain or stack. The center of the unit being added is placed at a location 

relative to the receiving center sampled from a Gaussian distribution along the width of the 

growth front. The far ends of the growth front are set at 40 standard deviations (regardless 

of its width), and collisions beyond the ends are not allowed. Growth proceeds until all 
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chains are part of one fiber. The resulting structure is presented to-scale in Figure 27c, 

with observably similar curvature features to that of the imaged nanofibers. 

3.5 Meso-Scale Simulation of Polymer Packing 

The simulation of fiber growth with chain-level resolution leads to another 

interesting question: why not simulate the packing of polymer chains throughout an entire 

morphological image? It could yield an indirect approach to the analysis of grain 

boundaries and inter-grain connectivity. Inter-grain connectivity is frequently cited as a 

thin film structural feature necessary for high field effect mobility in polymeric transistors, 

as shown in Chapter 2. Discussion of this concept centers around the presence of “tie 

chains”: polymer chains long enough to be incorporated into multiple crystalline grains, 

providing both a physical link and a charge transport pathway between grains.36 Indeed, tie 

chains have been directly observed via high-resolution TEM,149 and indirect evidence for 

their existence has also been presented by purposefully breaking polymers’ conjugation at 

regular intervals along their backbone.150 

 While the mere presence of tie chains is acknowledged as an important structural 

feature for charge transport, quantitative metrics describing their contribution to thin film 

structure have not been developed – a necessary first step in relating inter-grain 

connectivity to processing and properties. It has been shown that higher molecular weight 

conjugated polymers, or similarly, mixtures of high and low molecular weight polymers, 

show improved charge transport in field effect transistors, apparently due to the 

connectivity imbued by the longest chains in the molecular weight distribution.26,52,82,112 

Mechanical property simulations indicate that the presence of tie chains between 
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conjugated polymer crystallites improve their resistance to inelastic deformation.151 

However, because of the difficulty of experimentally characterizing tie chains, discussion 

of their quantitative impact on bulk material properties has been limited to molecular-scale 

simulations and, in the case of experimental studies, cartoons. Due to these limitations, 

important questions regarding the influence of tie chains remain unanswered: what is the 

quantitative relationship between a polymer’s molecular weight distribution and the 

number of tie chains it can form? How do tie chains influence the grain structure of a 

conjugated polymer thin film and vice versa? 

3.5.1 Simulation Details 

Once all of the fibers in an image have been vectorized, P3HT chains can be placed 

along the backbone, as illustrated in Figure 28. Starting from one end of a fiber, chains are 

randomly sampled from a log-normal chain length distribution specified by a number 

average molecular weight, Mn, and a polydispersity, PDI. A chain’s length runs 

perpendicular to the orientation of its parent segment’s backbone. Each subsequent chain 

is placed one π-π stacking distance further along the segment backbone; in this case, a 

distance of 0.38 nm. Because this simulation is targeted more at understanding long-range 

structure than individual fiber structure, it is assumed that each chain is centered on the 

fiber backbone (the so-called “naïve” assumption in Figure 27), and it is also assumed that 

chains lie flat in the plane of the image, extended to their full length, and do not bend or 

fold. As mentioned above, these assumptions are not realistic. However, the simulation can 
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provide an upper bound on tie chain behavior, through which one can statistically analyze 

the potential for tie chain formation in a given film. 

 

Figure 28 – Simulation of polymer chain packing along a vectorized fiber backbone. 
Chain lengths are perpendicular to their parent segment’s orientation, and are 
randomly sampled from a specified molecular weight distribution. Chains are spaced 
according to the π-π stacking distance of P3HT. 

  The simulation results are illustrated in Figure 29. The Orientation Map of an 

image, Figure 29b, serves as the initialization for the simulation. Figure 29c shows a to-

scale plot of all 501,331 polymer chains simulated in one realization, using an Mn of 12 kD 

so that there is visible space between fibers. A zoomed-in windows of the simulation is 

provided in Figure 29d. Only the chains from the crystalline fibers are simulated here – 

disordered chains in between grains are omitted due to the lack of information on their 

conformations. 
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Figure 29 – Visualization of image processing and simulation results. (a) Original 5x5 
µm AFM image, phase channel. (b) Orientation Map, in which fibers have been 
extracted, vectorized, and each segment colored according to its in-plane orientation. 
(c) Full-scale plot of all simulated polymer chains (501,331) in a 5x5 µm window. (d) 
Zoomed-in view of (c) with a 500 nm window. 

 To quantify the presence of tie chains in a simulated microstructure, we introduce 

the “tie chain density” metric, referred to here as rtie, and defined for a single vectorized 

fiber as: 

 𝑇𝑖𝑒	𝐶ℎ𝑎𝑖𝑛	𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝜌/VW 𝑛𝑚HY

=
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑒	𝑐ℎ𝑎𝑖𝑛𝑠	𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔	𝑓𝑖𝑏𝑒𝑟	𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑓𝑖𝑏𝑒𝑟	𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒	(𝑛𝑚) 	 
(4) 

It can be seen above that rtie quantifies the number of tie chains per unit length of a fiber. 

The process of counting the number of tie chains intersecting the fiber backbone is 

illustrated in Figure 30. First, the main fiber’s chains are removed from consideration to 

avoid counting self-intersections, although the underlying backbone is still drawn as a 

dashed black line. Next, every polymer chain in the entire simulated microstructure 

(~500,000 for a 5 ´ 5 µm image) is tested for intersection with every segment vector along 

the main fiber’s backbone using a line segment intersection analysis algorithm optimized 
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for speed. The coordinates of any intersection points are marked as red circles along the 

main fiber’s backbone in Figure 30. Finally, these intersection points are counted and 

divided by the total length of the fiber in nanometers, yielding the tie chain density, as 

defined above. This is calculated for every fiber and averaged across the image and across 

multiple realizations of chain packing. 

 

Figure 30 – Quantifying tie chain density for a single fiber. Starting from Figure 29b, 
the central fiber is made invisible. That fiber’s backbone is represented by a black 
dashed line, while red circles indicate the intersection point along its backbone of any 
chains from any other fiber in the entire microstructure (notice that even chains from 
the extreme left fiber are counted). 
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3.5.2 Molecular Weight, Fiber Length Density, and Tie Chains 

 Since we have access to AFM images of a wide variety of fibrillar structures from 

the current study, we can use these as realistic starting points for polymer packing 

simulations, and subsequently obtain a relationship between the maximum achievable tie 

chain density and any of the structural order parameters extracted by GTFiber with any 

simulated molecular weight distribution of our choosing. The relationship between fiber 

length density and tie chain density is plotted in Figure 31a & b for three different assumed 

molecular weight distributions: Mn = 10, 25, and 40 kD at a PDI of 2.25. It can be seen 

here that tie chain density increases with increasing fiber length density for all molecular 

weights. In other words, as fibers get closer to one another, their chains are more likely to 

overlap, which is not altogether unexpected.  

What may be more surprising is the change in the slope of the relationship as 

molecular weight increases. For 40 kD, not only does tie chain density increase with 

increasing fiber length density, it increases twice as fast as that of 25 kD and over 10 times 

as fast as 10 kD, surpassing a value of 1/nm at a fiber length density of 10/µm. This means 

that in a typical fiber in a structure with fiber length density of 10/µm and Mn of 40 kD, 

there is the potential for a tie chain to occur every nanometer, or approximately 1 in every 

2.5 chains, although it should be stressed again that this is an upper limit due to the 

assumption of no chain folding. 
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Figure 31 – The potential for fibers to form tie chains given molecular weight 
distribution and fiber length density. (a) Tie chain density as a function of fiber length 
density, simulated for three different number-average molecular weights. Blue: Mn = 
40 kD, green: Mn = 25 kD, red: Mn = 10 kD. PDI = 2.25. Fiber cartoons are provided 
on the x-axis as a visual descriptor of fiber length density. (b) Probability density 
functions of the three molecular weight distributions considered at a PDI of 2.25. 
Highlighted in light blue is the range of chain lengths corresponding to the range of 
inter-fiber spacings similarily highlighted in (a). 

The reason for the difference in slopes between the different molecular weight 

distributions is illustrated in Figure 31c and d. As fibers approach each other, shorter 

chains in the molecular weight distribution can bridge the gap between fibers. Average 

inter-fiber spacing is simply the inverse of fiber length density, plotted as a second x-axis 
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in Figure 31a. Between the values of 10 and 14 µm-1, inter-fiber spacing decreases from 

approximately 115 to 75 nm, highlighted by a blue box. The corresponding chain lengths 

are highlighted in Figure 31b, in which the probability density functions of the three 

molecular weight distributions under consideration are plotted. In this range of inter-fiber 

distances, the chains lengths being accessed are more highly represented in the 40 kD 

distribution than the 25 kD by a factor of nearly 1.5, and the 25 kD is more populous than 

the 10 kD by nearly an order of magnitude, which matches the observed differences in the 

slopes of tie chain density versus fiber length density. This is illustrated with frames from 

actual simulations in Figure 31d. A single fiber in the center of each frame is shown as a 

black line, overlaid with red circles where chains from the neighboring two fibers (blue 

lines) intersect it. The chains from the central fiber are not plotted so that the intersection 

points are visible. As the fibers are packed more closely, the density of red intersection 

points visibly increases, confirming the trends quantified in the previous plots. 

The density of polymer chains in this depiction may appear visually unrealistic after 

having seen many studies with cartoons of polymer packing. It is stressed that this is the 

first time that conjugated polymer packing has been simulated at this length scale, and is 

arguably the most accurate depiction of the actual underlying structure presented to date. 

It is anticipated that these results will pair well with past simulations of internal nanofiber 

structure from coarse-grained MD simulations.152 
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3.5.3 Transferability of Results and Future Work 

The analysis and simulation tools presented here represent an important step 

forward in the quantification of conjugated polymer microstructure. While P3HT is not the 

state of the art in terms of performance, control of orientation and alignment in any 

conjugated polymer thin film is recognized as one of the most important factors in 

determining charge transport, thermal, and mechanical properties. Since the 

characterization of soft materials is generally quite challenging, and imaging plays a 

substantial role in structural characterization, any information that can be quantitatively 

extracted from images is potentially useful. It is our hope that insights from the packing 

and defects in aligned P3HT thin films will help researchers better understand related 

polymer systems. 

Computer vision tools for materials science are also rapidly advancing as imaging 

technologies improve and structures become more complex. Many strategies that have 

been successful in biology and medicine will be applicable to materials systems as well, 

the present system being one example. An ideal materials imaging ecosystem would 

include a centralized database of structural imagery, through which one could upload their 

images as a “search term” and be directed to past studies that produced similar images as 

well as the code used to analyze those images.153 Such an approach would facilitate greater 

standardization in measurements from images, as well as produce a large image database 

that would enable the application of more advanced computer vision techniques for image 

segmentation, such as generative adversarial convolutional neural nets.60 This is the subject 

of the next chapter. 
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3.6 Conclusions, Chapter 3 

 In conclusion, we have demonstrated both a powerful method for the analysis of 

fibrillar structures and the important process-structure-property relationships that fall out 

of this analysis for the P3HT nanofiber system. Our image analysis workflow is packaged 

as an open-source standalone application to be used by other researchers, allowing the 

calculation of their image-scale alignment (Sfull), fiber length density (rFL), and the decay 

length of orientational order (lC), as well as estimation of fiber length and width 

distributions with reasonable accuracy. At best, the availability of this software will enable 

the rapid analysis of fibrillar images right out of the box, and at minimum will provide a 

code base on top of which further image analysis tools can be developed. Additionally, a 

new interactive data visualization was introduced for structural imagery, enabling intuitive 

navigation of image libraries with quantitative order parameters. 

 The results of our analysis extend the already rich knowledge base on P3HT 

nanofiber growth and deposition to include detailed data on meso-scale packing, alignment, 

and defects. Microfluidic crystallization was shown to produce narrower fibers with higher 

fiber length density when deposited, while sonication was shown to produce wider fibers 

with lower fiber length density and alignment. A strong correlation between fiber length 

and alignment was identified, as well as evidence that shorter fibers preferentially segregate 

to the buried dielectric interface, causing packing defects that potentially limit alignment 

and charge carrier mobility in otherwise highly aligned structures. A simulation of fiber 

growth was introduced that reconciles both the observed log-normal distribution of fiber 

lengths and the nano-scale curvature inherent to P3HT nanofibers. Furthermore, a meso-

scale Monte Carlo simulation of polymer packing was used to illustrate to-scale 
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relationships between fiber length density, molecular weight, and the potential for tie chain 

formation. These results should support the effort to bring about a more quantitative 

understanding of conjugated polymer self-assembly, structural ordering and charge 

transport, while providing foundational tools for informatics-enabled materials 

experimentation and the general class of fibrillar materials. 
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Chapter 4. Structural Similarity Metrics for 

Materials Image Repositories 

4.1 Introduction 

The Materials Genome Initiative (MGI) is a far-reaching effort to halve the 

development time and cost of new functional materials.76 One of the main aims of the MGI 

is to modernize the management of increasingly large amounts of materials 

characterization data by providing cloud-based data hosting, version control systems and 

integration with supercomputing resources. While there are a vast number of materials 

characterization techniques, imaging, specifically microscopy, arguably stands the most to 

gain from the construction of cloud-based repositories. Imaging is undergoing rapid 

technological advancement, with new applications emerging in high-throughput biological 

analysis,71 in situ monitoring of crystallization,67 and in vivo evaluation of biomaterials.154 

It is used heavily in organic electronics research, revealing molecular-scale crystal packing 

motifs,131,155 meso-scale morphology and phase separation,156–158 and is increasingly used 

for spatially-resolved functional measurements.142,159 

The number of microscopy images from materials characterization contained on 

laboratory hard drives around the world is likely enormous, but most of these datasets are 

uncatalogued and are therefore not searchable or discoverable. This is unfortunate because 

recent advances in computer vision such as Google’s Cloud Vision API160 and Facebook’s 

DeepMask161 demonstrate that computers can reliably analyze scenes and identify objects 

when trained with a large enough (> 1 million images) database of tagged images. If 
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modern computer vision techniques were applied to materials science, it could 

revolutionize how structural imagery is searched, discovered, and analyzed. 

 Image analysis in materials science (and biology, and medicine) is currently 

approached on a case-by-case basis, and generally involves a segmentation step 

(identification of pixels belonging to a phase or object of interest) and the extraction of 

physically relevant quantities from the segmented image. Even when the microstructural 

feature of interest is something simple, such as the volume fraction of a particular phase, 

quantitative feature extraction requires at least some degree of algorithmic tailoring – and 

this is assuming that the interested researcher can find an existing code library that deals 

with their specific task. Oftentimes, due to the idiosyncrasies of an imaging technique or 

material system, algorithms must be developed from scratch.162 

In a more ideal materials imaging ecosystem, a researcher would use one of their 

own images as a query to a central image database, which would return the most similar 

images, the publications they appear in, and the code library used for their analysis. This 

would be superior to traditional text-based searches because the performance of image 

analysis algorithms is driven more by the appearance of the image being fed to them than 

by the description of the feature they purport to extract or analyze. For example, the 

analysis of C. Elegans worms in biology shares many similarities with the analysis of fibers 

in materials, but a materials researcher would never think to search for “worms”.71,114 

Given that the biological and medical communities are somewhat more advanced than the 

materials community in their approach to image analysis, this problem is likely 

widespread.66,100,163 
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 To realize this vision for materials image analysis infrastructure, robust descriptors 

of image similarity must be developed. A descriptor, in this case, refers to an n-dimensional 

feature vector calculated for an image, ideally possessing invariance to affine 

transformations such as translation, scaling and rotation. Image similarity can then be 

defined as the Euclidean distance between two images’ feature vectors, usually after 

simplifying the features with a dimensionality reduction algorithm. Such descriptors must 

also be calculable on a raw image, rather than a segmented image, because of the 

aforementioned difficulty of designing segmentation algorithms for different material 

classes. 

Recent studies have begun to address this problem: DeCost et al. demonstrated the 

use of SIFT (Scale-Invariant Feature Transform) as a robust feature space for materials 

images and later extended their work to include features from intermediate layers of 

convolutional neural networks (CNNs), using both Bag of Words and Vector of Locally 

Aggregated Descriptors (VLAD) for feature encoding.153,164 Chowdhury et al. and Lubbers 

et al. investigated the use of a wide variety of features, including a CNN layer, in 

combination with a wide variety of feature selection methods.165,166 In these studies, 

performance was evaluated on a microstructure classification task using datasets 

containing up to 1,000 labeled images, mostly from metallurgical systems. The best 

performance in both studies was obtained with CNN features classified using a support 

vector machine with a linear kernel. Chowdhury did not see a significant improvement in 

performance through feature encoding, and DeCost did not consider any cases without 

feature encoding. In either case, both were able to obtain ~95% accuracy in some 

classification tasks, while still experiencing difficulty with others. In general, it seems that 
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the combination of feature generation with SIFT or CNN features, dimensionality 

reduction, and classification with a SVM is a robust strategy for the classification and 

comparison of images of materials structures. 

In this study, we aim to extend these previous results to a larger, more diverse image 

database: the set of every image contained on our group’s atomic force microscope. Over 

16,000 images were available – we selected 3,000 for tagging and analysis. This dataset 

contains images from three different imaging modes and ten different users, likely 

encompassing hundreds of materials experiments and dozens of unique structural classes. 

It also contains many noisy, artifact-laden, or otherwise discarded imaging results that 

traditionally never see publication, but here illustrate the additional need for automated 

artifact recognition in imaging systems. The above analysis strategies are evaluated for two 

classification tasks: the automated identification of images containing fibers, and the 

automated identification of images containing artifacts. The former is intended as a 

demonstration of automated dispatching to tailored image analysis programs (in this case, 

GTFiber114), while the latter is intended to demonstrate a path toward automated 

acquisition of microscopic imagery. 

4.2 Methods 

4.2.1 Database Assembly, Cleaning, and Tagging 

 Raw AFM images are stored in a file format containing multiple channels of image 

data as well as metadata about the acquisition process such as scan size, resolution, and 

instrument settings. The “image” data is technically a 2-D spatial map of the electrical 

response of a scanning probe as it traverses a sample, like a record player. Each channel of 
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an AFM image file represents a different aspect of the tip’s response to its drive signal as 

influenced by the local physical and electrostatic environment of the sample. For example, 

the “intensity” of the Height channel indicates how the tip was shifted vertically at each 

pixel to maintain the specified separation from the sample. The Amplitude Error channel 

indicates the deflection of the tip at each pixel, which corresponds to the slope of the sample 

surface. The Phase channel indicates the phase shift of the tip’s response relative to its 

drive signal (typically a sine wave in the hundreds of kHz, the resonant frequency of the 

tip material), and is known to qualitatively capture differences in hardness, crystallinity, 

and chemical composition. While these channels are not technically images in the strictest 

sense of the word, mapping the acquired matrices to an image through a color map 

generally yields images that have a visually digestible appearance and correspond to 

recognizable structural features such as particles, grains, fibers, and other objects. 

 The 3,000 images under consideration are thus generated from 1,000 original raw 

files, each with three channels. The images range in acquisition size from 0.5 – 30 µm, and 

in resolution from 256 – 1024 pixels/line. Each image is traditionally pre-processed by a 

flattening operation. This involves the subtraction of a third-order polynomial fit to each 

row of pixels from itself, which removes long-range variations in tip response. To enable 

the extraction of consistently-sized feature vectors across the entire database, all images 

were resized to 512 ´ 512. While this removes some of the detail contained in higher 

resolution 1024 ´ 1024 images, only 30 images were taken at this resolution. Upsampling 

of the 256 ´ 256 images is not expected to introduce previously unseen features, especially 

given that most feature extractors perform scale-invariant operations on the image gradient. 
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Images were labeled by hand by scrolling through image previews and entering 

class labels in Excel, but further handling of the image database was performed using the 

Pandas package in Python. One set of labels were generated for whether an image 

contained fibers and could be meaningfully processed using GTFiber. The other set of 

labels contained information on the various types of artifacts present in AFM images, as 

illustrated in Figure 32. Automation of AFM to reduce image artifacts is an area of 

consistent research, and is usually approached from a controls perspective targeting the 

instrument’s electronic systems, rather than from a computer vision perspective.167–169 

Seven categories of artifacts were observed in our labeling process: (1) horizontal and 

vertical line defects, characterized by a row or consecutive rows of pixels visibly disrupting 

the surrounding structure; (2) horizontal and vertical gradients in image quality 

(sharpness), indicative of tip degradation; (3–5) short-range horizontal artifacts of three 

different types: streaking, periodic noise, and short “bars” of dark pixels; (6) long-range 

sinusoidal waves in image intensity, usually caused by interference between the laser’s 

reflection off the tip and its reflection off of any more reflective parts of a sample, such as 

metal electrodes; and (7) homogeneous, static-like noise, possibly due to improperly tuned 

gain or drive amplitude. Surprisingly, images containing noise or artifacts of some kind 

represented 38% of the dataset – although the severity was highly variable and in many 

cases may not have precluded the image from being presentable. While classification of 

individual noise classes would ultimately be desirable, we limit classification experiments 

here to simply deciding whether or not an image contains an artifact, because not all classes 

of noise are well-represented in the dataset. 
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Figure 32 – Structural classes and artifact classes labeled in the dataset with 
examples. 

4.2.2 Feature Generation: Spatial Statistics 

 A discussion of feature generation for materials microstructures would be 

incomplete without first describing 2-point spatial correlations, illustrated in Figure 33. 

Spatial statistics enable the embedding of spatially correlated data in a translation-invariant 

feature matrix, and have found use in geographical information systems as well as in the 

statistical representation of microstructure.65,95,170 They are computationally efficient, 

taking advantage of the Fast Fourier Transform algorithm. To use spatial statistics, distinct 

microstructural states must first be identified and segmented. In Figure 33, there are only 

two states: fiber or not fiber. The heat map at right indicates the probability that a vector 

with coordinates (tx, ty) will have both of its ends contained in a fibrillar pixel when placed 
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randomly in the microstructure. This is known as an autocorrelation function – a cross-

correlation would quantify the probability that the same vector had its ends in different 

phases. When only two phases are present, the autocorrelation is the only linearly 

independent feature. 

 

 

Figure 33 – Illustration of 2-point autocorrelation matrix (right) for the segmented 
fibrillar microstructure at left. In the segmented microstructure, a white pixel 
indicates a fibrillar phase. In the autocorrelation heat map, the color indicates the 
probability that a vector with coordinates (tx, ty) will have both of its ends contained 
in a fibrillar phase when placed randomly in the microstructure. 

Note that the origin of the autocorrelation is in the center, which corresponds to the 

zero vector, or the probability that any single point is in a fibrillar phase – i.e. the volume 

fraction. The top end of the scale bar indicates that the volume fraction of fibers in this 

microstructure is 0.35. Probabilities decrease quickly to the left and the right: if one starts 

in a fiber and moves horizontally, they will quickly end up in a background region. 

Probabilities decrease more slowly if one looks at an angle of »80º, corresponding to the 

average orientation of the fibers in the example microstructure. This feature space is 

advantageous because it is fundamentally related to physical laws governing material 
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mechanics. However, it is severely limited in two aspects: (1) it is not rotationally invariant, 

and (2) it requires an accurate segmentation. Rotational invariance could be dealt with by 

using a polar autocorrelation function: however, fast and direct inverse polar FT algorithms 

have only recently been developed.171,172 As an aside, the implementation of polar FTs 

could be potentially revolutionary for computer vision and perhaps even molecular 

simulations to the same extent that the original FFT algorithm revolutionized signal 

processing many decades ago.  

4.2.3 SIFT Features 

Spatial statistics serve as an intuitive warm-up to more complex image 

representations such as SIFT and CNNs. SIFT features are illustrated in Figure 34, 

borrowing from DeCost et al.153 For each image, a set of keypoints are identified, illustrated 

as circles of varying size with radial lines indicating their orientation. Keypoints are 

identified by subtracting Gaussian-blurred versions of the image from itself at increasing 

Gaussian widths and evaluating gradient magnitudes. For each identified keypoint, a 4 ´ 4 

grid is overlaid on the image, and the image gradient magnitude is calculated in 8 different 

directions for each cell of the grid, resulting in a 128-dimensional feature for each keypoint. 

Each image is thus described by a k ´ 128 array of features, where k is the number of 

keypoints identified. Further information on SIFT features can be found in its original 

publication.173 
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Figure 34 – SIFT Feature Generation. Keypoints are identified by circles with radius 
corresponding to their scale and radial lines indicating their orientation. For each 
keypoint, an oriented and scaled 4 ´ 4 grid of gradients in 8 directions is calculated, 
yielding a 128-dimensional feature for each keypoint. Adapted from Ref. 153. 

4.2.4 VLAD Encoding 

 An immediately obvious problem with SIFT features is that they generate a 

different number of features per image. This is solved by performing a k-means clustering 

of all of the identified features across the entire image database, which generates a 

dictionary of image features. In a Bag of Words representation, an image is described by 

the histogram of occurrences of each visual word (cluster centroid) in the dictionary 

throughout the image.153 However, features that are close to cluster boundaries are not well 

represented. The Vector of Locally Aggregated Descriptors (VLAD) approach mitigates 

this by representing each cluster’s contribution to an image through the normalized, 

aggregated difference between the features assigned to that cluster and its centroid. A 

VLAD representation of an image thus contains a unit vector for every cluster centroid in 

the visual dictionary that points from the centroid to the locus of features (from that image) 
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assigned to the centroid. Here, we use 100 feature clusters, yielding a 12,800-dimensional 

VLAD vector for each image. VLAD has been shown to outperform Bag of Words 

representations as well as other encoding methods, and more details can be found in the 

provided references.174,175 

 

Figure 35 – VLAD encoding after k-means clustering of all identified image features. 
Colors represent distinct feature clusters. 

4.2.5 Convolutional Neural Net Representations 

 Research on CNNs for computer vision applications has skyrocketed in recent 

years. A CNN, illustrated in Figure 36, is sequence of convolutional filter banks connected 

by artificial neurons. The filter and neuron weights are trained for object recognition and 

localization on a dataset of millions of images, usually of natural scenes containing 

everyday objects.60 While not explicitly rotationally invariant, due to the extreme variety 

of these training sets, the trained neural net must inherently account for such 

transformations. While designing and training a CNN from data is an extremely 

challenging task that can take weeks to months, it has been shown that pre-trained CNNs 
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can perform admirably on datasets that fall entirely out of their training set, referred to as 

“transfer learning.”176 Here, we use the pre-trained weights of the VGG16 CNN 

architecture trained on the ImageNet ILSVRC-2014 dataset.177 While the full network 

ultimately reduces down to 1,000 object category labels, for transfer learning it is generally 

best to use the mid-level features as an image descriptor, then train a classifier on that 

feature space. Others have shown that for microstructural imagery, mid-level convolution 

layers are the most effective, so we have selected the 3rd convolution layer from the 4th 

block of the VGG16 model as our feature set. 

 

Figure 36 – Convolutional neural net architecture and feature representation. 

 Each block of a CNN is reduced in size by a factor of 4 through a max pooling layer 

– since VGG16 was trained on images with 224 ́  224 resolution, the 4th block has channels 

of size 28 ´ 28. Since our images are 512 ´ 512, the 4th block features have 64 ´ 64 512-

channel features. We run these features through a 100-cluster VLAD encoding, similar to 

the SIFT features, resulting in features with 512 ´ 100 = 51,200 dimensions. 
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4.2.6 Classification, Dimensionality Reduction, and Reverse Image Search 

 The full algorithm stack used for this study is outlined in Figure 37. First, the 

feature generation and encoding methods are applied to the image database. Classification 

is then performed using a Support Vector Machine (SVM) with a linear kernel, margin 

parameter C=1, and L2-normalized feature vectors. Classification performance is 

evaluated by performing 10 runs of 10-fold cross validation on randomly chosen balanced 

slices of the dataset containing 200 images per class. Standard deviation of classification 

accuracy is computed across the 100 validation sets that were tested. This cross validation 

procedure ensures that over-fitting is not occurring, a legitimate concern given the high 

dimensionality of the feature vectors under consideration. 

 

Figure 37 – Outline of feature extraction, classification and nearest neighbor search. 

Another way to verify that the features are meaningful is through the next step of 

our workflow: dimensionality reduction and nearest neighbor search. For this, we use t-

Distributed Stochastic Neighbor Embedding (t-SNE), a dimensionality reduction technique 

that was developed for visualizing high-dimensional datasets in two dimensions.178 Its 

objective function is tailored to preserve local similarity, but does not heavily penalize 
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neighboring mapped points whose high-dimensional Euclidean distance was large. So, 

images that were close to each other in high-D space are guaranteed to be close to each 

other in 2-D, but images that were far from each other in high-D could end up close to each 

other in 2-D. 

Using this reduced representation, we can define nearest neighbors as those with 

the minimal Euclidean distance from a query image. This type of search functionality could 

be useful for many applications: researchers who have found a unique-looking structure 

could find other work, perhaps in completely different fields, that obtained the same 

structure. Or, researchers could search for images similar to their own to identify papers 

with more detailed image analysis protocols for their specific features. Interestingly, this 

concept of “reverse image search” can be extended to include almost any kind of data. 

Mass spectrometry utilizes this to match a collected mass spectrum to an existing library 

of known mass spectra for various compounds. If all research data were compiled in a 

central database, any image, spectrum, or spreadsheet could be used to link researchers 

together based simply on the similarity of their raw data. This could lead to a revolutionary 

shift in how research is performed. 

4.3 Results and Discusssion 

4.3.1 Classification Performance 

 The results of SVM classification cross validation are presented in Table 2. Using 

100 VLAD clusters, SIFT and CNN features show remarkably similar performance on both 

the artifact and fiber classification tasks – within their respective margins of error. 

Increasing the images per class (N Per Class) did not have a significant effect on 
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classification accuracy. Increasing the number of VLAD features is certainly an avenue for 

exploration – Chowdhury et al. tested a wide variety of feature encoding methods on CNN 

features for microstructure classification, including principal components and Fisher 

vectors, and found that encoding actually does not significantly enhance classification 

accuracy versus unencoded features. While encoding is necessary for SIFT features 

because of their variable length, it is technically not required for CNN features when 

images are of equivalent size, although the current dimensionality of the raw CNN features 

is 64 ´ 64 ´ 512 = 2,097,152, which seems unnecessarily high. 

Table 2 – Classification performance on artifacts and fibers with SIFT and CNN 
features. 

LABELS	 FEATURE	 ENCODING	 SVM	KERNEL	 N	PER	CLASS	 ACCURACY	 STD.	DEV.	

ARTIFACTS	 SIFT	 VLAD100	 linear	 200	 74.9%	 ±	5.9%	

ARTIFACTS	 CNN	 VLAD100	 linear	 200	 78.8%	 ±	6.2%	

FIBERS	 SIFT	 VLAD100	 linear	 200	 95.5%	 ±	3.2%	
FIBERS	 CNN	 VLAD100	 linear	 200	 96.8%	 ±	2.7%	

 

 Classification accuracy is much higher for the fiber classification task than the 

artifact classification task. Fiber classification is over 95% accurate for both feature sets, 

with low variance. This matches the best performance from previous studies of 

microstructure classification and further validates the generalizability of this method. Since 

our database is larger than those that have been studied before and has good representation 

of this particular structural class, this was expected. 

Artifact classification, on the contrary, is only around 75% accurate during 

validation. There are a couple factors that may contribute to the observed drop in 

performance. First, the types of artifacts that were labeled vary substantially in both scale 
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and severity. Long-range horizontal waves likely have a very different CNN representation 

than that of single-line defects or static. Training accuracies were generally in the range of 

95%, however, indicating that the feature space can be discriminative. It is possible that 

increasing the size of the training set would further improve performance by providing 

more examples of the rarer artifact classes. Another complication with CNN features is that 

the VGG16 net was trained on natural, artifact-free images, and thus does not have weights 

that would be expected to discriminate among artifacts. It may be the case that a CNN 

needs to be completely re-trained for effective artifact classification. On the other hand, 

SIFT feature extraction relies heavily on image gradients and keypoints. Some artifacts are 

characterized by the absence of a gradient, or have extremely complex local gradient 

patterns that may get washed out by the gradient calculation kernels used by SIFT. Artifact 

classification certainly warrants further study, as it is a problem that frequently goes 

unreported. 

4.3.2 2-D Embedding and Library Visualization 

 To visualize the feature embedding of the image library, we mapped the VLAD100-

encoded SIFT features to a 2-D representation using t-SNE, pursuant to previous reports. 

The result is plotted with image thumbnails in Figure 38. Each image has been labeled 

with a blue border if it contains fibers, and a red border otherwise. The database seems to 

separate into three distinct regions, with the furthest right holding most of the fiber images. 

These three regions are not the three AFM channels, as may have been expected: 

attempting to train an SVM to classify the different image channels yields poor results, 

indicating that they are not easily distinguished. Closer inspection reveals that the bottom-
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left region contains mostly smooth surfaces, free of strong edges, while the top region 

contains images with higher contrast, indicating either distinct phases or rougher surfaces. 

The region on the right contains most of the images labeled as fibers, but also contains 

images with ridge-like features as well as oriented artifacts. In the zoomed-in view at right, 

we can see that images with fibers cluster very closely, and that one of the images that was 

not manually labeled as having fibers still contains some type of oriented anisotropic 

objects that could be construed as fibers. This highlights the limitations of text-based, 

experimentalist-provided class labels when describing microstructure, and further 

emphasizes that the similarity metric is ultimately what matters. 

 

Figure 38 – 2-D embedding of the image database using t-SNE. (Left) Full dataset, 
(Right) Zoomed-in view of the neighborhood containing most of the fiber images. Blue 
outlines indicate a label of “fiber” while red indicate “not fiber”. 

It should be noted that the intensity scales in these images were selected by the 

AFM users at the time of image acquisition and have not been normalized or standardized 

in any way. Most users are primarily interested in a single image channel and attempt to 
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scale that channel’s intensity to increase its contrast. Other channels are scaled 

automatically by the acquisition software. At least for the Height channel, it may make 

sense to standardize the intensity scale (which should be possible when pulling images 

from the raw files) so that all images share a common scale. Then again, the range of height 

values is likely quite large, and re-scaling them across the whole database may make many 

images appear essentially featureless. Furthermore, the height profile can be influenced by 

objects below the surface being measured. In the present study, we are mostly concerned 

with the performance of the image similarity metrics, but these practical issues are 

important to consider as larger databases come online. One would likely pre-filter the 

metadata of the image database to ensure results are on a similar length and height scale 

before proceeding to structural evaluation. 

4.3.3 Reverse Image Search 

To demonstrate the usefulness of structural similarity metrics, we provide examples 

of reverse image search results in Figure 39 for four representative query images with 

highly varied features. The results shown are the first three images with the lowest 

Euclidean distance from the query image in t-SNE space. In the first row, we consider a 

structure that could best be described as “terraced,” again raising the issue of describing 

structures with words. The first two results return other images that appear to be the same 

material system. The third result is from a different user and is therefore from a different 

material system despite its similar appearance. In a real-world application of reverse image 

search, one would exclude their own data from consideration, but here, being returned data 

from the same system is simply an indication that the similarity metrics are performing 
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well. In the second row, the query image is a structure of networked globules and returns 

other networked globules. The third row consists mainly of short fibers with no preferential 

orientation, and the fourth row contains what appear to be porous or dendritic structures. 

The third and fourth row of results indicate that the image search algorithm is robust to 

noise, as some results contain long-range waves or large particulate artifacts that are not 

present in the query image. From a search and discovery standpoint, this is good, but it is 

also an indication of why the artifact classification problem is difficult. 

Implementation of reverse image search as a service to researchers runs into 

complexity vis-á-vis intellectual property concerns. Researchers must release the copyright 

to their data and images for any website to display that data. In most cases, these copyrights 

may actually be held by the institution employing the researcher, rather than the researcher 

themselves. A potential workaround would be to provide search results only from 

published work. That is, scrape every online scientific journal to download their images, 

compute the representations of those images with SIFT or CNN features, then direct a 

researcher to the DOI of the paper containing each result image, rather than showing the 

image itself. 
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Figure 39 – Performance of reverse image search evaluated on a variety of 
microstructures, displaying first three results sorted by shortest Euclidean distance 
in VLAD100-encoded, t-SNE-reduced SIFT space. 
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4.3.4 Automated Image Analysis Dispatching 

In Figure 40, we illustrate how an automated structure classifier could be used to 

dispatch image search results to lower-level image analysis codes and software. GTFiber 

is an open source software package developed by our group for the automated extraction 

and analysis of densely packed fibrillar structures, generating both length and width 

distributions as well as several orientational order parameters. Although it is designed 

specifically to analyze fibers, it is also somewhat limited in the range of fibrillar images 

that it can reasonably analyze – and this is true of most heuristic or model-based image 

analysis pipelines.66,71,73 They are designed for a specific dataset and may be effective on 

a range of other data, but generally have limitations when transferred to foreign material 

systems or imaging technologies. A central imaging database with reverse image search 

functionality and robust similarity metrics could therefore help direct researchers to 

appropriate low-level image analysis code and software. 

 

Figure 40 – Example of dispatched image analysis search result: a query image is 
uploaded, classified as containing fibers that can be analyzed by GTFiber, and is 
dispatched for further analysis, including the extraction of orientation and fiber 
length distributions. 

 The concept of using raw data as a search query to direct researchers to appropriate 

analytical code can be generalized to nearly any type of data, provided that raw scientific 
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data is publicly available online. Beyond promoting transparency and reproducibility, this 

is the single biggest argument for an “Open Science” ecosystem.77 Any absorbance 

spectrum, X-ray diffraction pattern, calorimetry curve, gas chromatogram, or even Excel 

spreadsheet could be uploaded to the central research cloud and return the most appropriate 

analytical code or protocol based simply upon data similarity, potentially saving thousands 

of hours of labor spent re-writing models and analysis codes. If we take this thought 

experiment even further, raw data could be automatically analyzed and converted into a 

presentable figure with a standardized format for that data source. From there, it is only 

another step to the automated generation of research publications from raw data. While the 

storytelling aspect of paper writing is an important facet of research, the implementation 

of at least some of this functionality could save researchers a significant amount of time 

and effort. 
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4.4 Conclusions, Chapter 4 

 We have demonstrated the application of well-studied computer vision algorithms 

to the task of automatically classifying AFM images according to their structural class as 

well as the presence of artifacts. VLAD-encoded SIFT and CNN features were both shown 

to identify fibers in images with >95% accuracy, while artifacts were identified with 75% 

accuracy. Additionally, reverse image search functionality was demonstrated using 

dimensionality reduction and Euclidean distance similarity metrics, with a wide variety of 

microstructures returning intuitively similar results, robust to the presence of image 

artifacts. This is the first time that an AFM image database of this scale has been subjected 

to such an analytical treatment, spanning many different experimental systems and 

instrument users, as well as a range of imaging modes. This study was intended to 

demonstrate the value of centralized, open image repositories for materials science, which 

could be used to facilitate the discovery of low-level image analysis codes and software as 

well as research publications containing structures matching those present in an image-

based search query. Ultimately, such an ecosystem would enable more efficient, 

informatics-driven data analysis as well as increased connections between researchers in 

disparate fields. 
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Chapter 5. Conclusions and Future Work 

5.1 Conclusions 

The main topics addressed in the methods and results presented here fall into three 

categories: process-structure-property relationships in P3HT-based OFETs, successful 

computational strategies for image analysis of fibrillar materials, and informatics 

methodologies for handling big, open-access materials data. In the case of process-

structure-property relationships, many relationships were discovered through collaboration 

with other experimentalists and through follow-up experiments to fill out previously 

explored design spaces. 

5.1.1 Process-Structure-Property Relationships in P3HT-based OFETs 

The Structure-Property Relationship for P3HT 

Several molecular and bulk relationships were previously known: a planarized 

polymer backbone enhances mobility through increased charge delocalization, higher 

molecular weight polymers are necessary for inter-grain connectivity, and an edge-on bulk 

grain orientation is necessary to ensure that both polymer backbones and π-π stacks are 

contained in the quasi-2-D plane relevant to charge transport. 

Here, these guidelines were refined through a quantitative analysis of the meso-scale 

grain structure of P3HT thin films. Of all the fibrillar structural metrics considered, fiber 

alignment was most strongly correlated with charge carrier mobility when overall fiber 

orientation was nominally perpendicular to charge transport. This indicated that the 
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function of P3HT nanofibers was two-fold: (1) to planarize the backbones of as many 

P3HT chains as possible, and (2) to provide charges access to tie chains that can carry them 

through the next grain boundary on their way to the opposite electrode. Alignment is 

correlated with mobility because higher alignment guarantees lower angles between 

neighboring fibers, which allows tie chain molecules to be more planarized as well. 

Factors Limiting Alignment 

Despite achieving thin films with Sfull > 0.9, perfect meso-scale fiber alignment is 

still limited by defects. Fibers formed in solution tend to follow a log-normal length 

distribution, indicative of a polycondensation-like growth mechanism. Since π-π stacking 

is non-specific and does not fix the registry of neighboring polymer chains, small shifts in 

stacking location during step- and chain-growth lead to nano-scale kinks that prevent P3HT 

from forming perfectly straight fibers. In addition, the shorter fibers in the population tend 

to segregate to the buried dielectric interface and interrupt packing, which causes alignment 

at the interface to be slightly lower than at the top surface. 

Process-Structure Relationships 

Fibers can be nucleated through sonication, UV irradiation, a brief residence time at 

low temperature, or stochastically over time. Further growth can be induced by aging, poor 

solvent addition, or application of UV irradiation in a microfluidic flow environment. 

However, these nucleation and growth methods do not follow equivalent pathways. 

Sonication leads to the formation of wider fibers that grow more slowly and thus do not 

align as well. Crystallization in a microfluidic environment leads to significantly higher 

fiber length density, but is more difficult to accurately control. Poor solvent addition leads 
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to rapid, uncontrolled growth that limits the formation of tie chains. UV irradiation 

combined with aging from 1–2 days yields optimal nucleation and growth conditions for 

long fibers that align well when blade coated. A more controlled experimental system for 

microfluidic crystallization may also yield similar results. 

In thin film deposition, spin coating was shown to induce partial radial alignment of 

nanofibers with a slight rotational bias, indicating that film drying occurs so quickly that 

the transient rotational acceleration of the substrate influences the resulting thin film 

microstructure. Blade coating was shown to induce linear alignment of fibers with mean 

length greater than ~ 500 nm at a blade velocity of 2–3 mm/s. Lower and higher blade 

velocities were less effective. A full investigation of the effect of blade coating parameters 

on morphology is certainly warranted as future work, given its relevance to roll-to-roll 

coating processes. 

5.1.2 Image Analysis Strategies 

Robust, accurate extraction and analysis of P3HT fibers from AFM images was 

demonstrated through a combined heuristic and machine learning approach. Coherence-

enhancing anisotropic diffusion filtering and top hat filtering were demonstrated as 

necessary pre-processing steps to enhance segmentation performance in the presence of the 

significant noise and artifacts inherent to the imaging of soft materials with AFM. 

Subsequently, adaptive thresholding and skeletonization yield a representation of fibrillar 

structure that permits the extraction of fiber alignment and the decay length of orientational 

order. 
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To proceed further in analysis, fibers must be vectorized. It was demonstrated that 

breaking the skeletonized image into unbranched segments, fitting each segment with the 

Active Contours algorithm, and reconstructing fiber segments through a matching 

algorithm parameterized by maximum stitch gap and maximum curvature yielded accurate 

and computationally efficient fiber extraction and measurement. Parameter tuning by 

visual agreement yielded rapid and meaningful estimates of fiber alignment, orientational 

order decay length, fiber length density, and fiber length and width distributions. Structural 

measurement accuracy within 10% of ground truth values was demonstrated by optimizing 

image processing parameters through training on a set of manually traced images. 

The resulting software package, GTFiber, is provided as open source software and is 

available as a standalone application for Windows or Mac. 

5.1.3 Materials Informatics Infrastructure 

Handling Process-Property Data 

Significant insight was gained through the construction of a structured, open-access 

database for OFET processing and property information. This revealed early on the effect 

of molecular weight on device performance, as well as the importance of controlling device 

architecture and characterization decisions such as channel length, electrode material, and 

surface treatment. Through a rigorous search of the database, a standardized device was 

identified that had been reported with little variation in processing across multiple studies 

in the literature. This revealed subtle changes in process, architecture and characterization 

that still led to significant variance in reported performance. While literature reviews are 

sometimes carried out through database curation, the assembled database is infrequently 
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published with a searchable interface. This study additionally demonstrated the value of 

such an approach. 

Material Image Databases 

While the image analysis protocol presented in this work represents a step forward 

in a specialized case of microstructural analysis, there is potential for disruptive innovation 

in the broader ecosystem of materials imaging. This was demonstrated through the analysis 

of a large, diverse materials image database: all of the images from a single Atomic Force 

Microscope. Feature extraction through a pre-trained CNN or SIFT, combined with feature 

encoding, dimensionality reduction, and support vector machines, were shown to be highly 

effective at identifying whether images contained fibers, while image artifacts were 

classified with relatively lower accuracy. In addition, reverse image search was 

demonstrated, through which an image could be used as a search query to find other 

material systems that produced similar microstructures. The combination of these 

functionalities suggests that the assembly of large scale, open-access materials image 

repositories could improve the discovery of both low-level image analysis protocols and 

bring about unexpected connections between researchers, promoting greater 

interdisciplinary collaboration. 
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5.2 Suggested Future Work 

5.2.1 Leveraging IBM Watson for Initial Experimental Design 

A problem that frequently arises in academia and industry is that of initial 

experimental design on a new material system. Development teams generally have a 

specific performance target and a limited range of scalable processing strategies.179,180 

Text-based search and discovery of promising literature results can often be an incomplete 

process, especially if the development team is making a foray into an area with which they 

have limited expertise. If the scientific literature were curated such that all data on 

performance metrics and process protocols were structured and stored under standard 

metadata tags, dynamic databases on materials experiments such as the OFET database 

could be constructed instantly, leading to simplified selection of initial experimental design 

spaces, as illustrated in Figure 41. A by-product of this infrastructure would be semi-

automated generation of literature review articles. 

IBM Watson was designed essentially for this task, and has been used with varying 

success for performing research across large volumes of literature data, mostly in the life 

sciences.181 Materials research stands to benefit equally from such an approach, especially 

given that physical properties are defined much more rigorously and quantitatively for 

materials than in biology. 
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Figure 41 – (upper) Dynamic curation of process-property databases with IBM 
Watson, (lower) Automated extraction of raw data from published figures. 

Extraction of Raw Data from Published Figures 

The main limitation of IBM Watson is that it cannot read data from figures, which 

probably contain the majority of relevant scientific data. Automated extraction of data from 

published figures is perhaps one of the grand challenges in computer vision. State-of-the-

art neural networks are currently limited to classifying what type of plot is presented in a 

given figure (bar, line, scatter, etc.).182,183 This problem has many parallels with fiber 
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extraction and measurement: line plots are essentially semi-flexible contours that require 

highly accurate object localization and measurement. As part of an NSF FLAMEL project, 

myself and two colleagues designed a proof-of-concept algorithm pipeline to identify axis 

labels and extract raw data from single- and multi- series scatter plots, shown in Figure 41. 

It combines Hough transforms, optical character recognition, some morphological 

transformations, and k-means clustering to accomplish this task. There is one similar 

approach to this problem in the broader literature for bar charts.184 The solution to this 

problem in the general case could be fundamentally transformative for scientific research. 

5.2.2 Generative adversarial neural nets for microstructure segmentation 

Solving object localization and measurement problems for materials in the general 

case will require using state-of-the-art approaches from deep learning. Generative 

Adversarial Neural Networks (GANNs) are currently making great strides in producing 

high-performance artificial intelligence models, and have even found use in some 

microstructural simulation tasks.185 These function by having one neural net generate 

training examples while another neural net attempts to classify them. The generator steadily 

increases difficulty (through the addition of noise, other artifacts and affine 

transformations) in an attempt to break the classifier. Through this iterative approach, 

manual labelling of training sets becomes less necessary. 
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Figure 42 – Generative Adversarial Neural Net approach to universal object 
localization and measurement. 

 In this proposed project, a GANN would be trained by simulating packed fibrillar 

structures in increasingly complex scenarios, similar to the approach used in Appendix A 

for evaluating GTFiber. By simulating fibers with varied properties, packings, and levels 

of added image distortions and noise, a CNN could likely be trained to extract fibers in the 

general case. The difficulty in this approach is defining an objective function for the CNN. 

Simply producing a vector of class labels is not enough: the objective function must 

confirm that the population of fibers extracted matches that of the training image. GTFiber 

utilized average structural measurements for accuracy training. Vectorization algorithms 

can match these averages by playing tricks that generate unrealistic fiber populations. 

While this was accounted for in this work, a one-to-one population match is the best test 

of accuracy. 
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5.2.3 In situ characterization of OFET processing and properties 

 

Figure 43 – In situ monitoring of device performance during processing. 

Finally, this section would be incomplete without a recommendation for further 

studies of OFET processing. While explorations of microstructure are intellectually 

stimulating and provide significant insight into the physical mechanisms at play during 

processing and under device operation, sometimes microstructural considerations must be 

ignored in favor of rapidly optimizing performance. Incidentally, this was the stated goal 

at the outset of this project, but existing OFET processing methods were not well-

controlled enough to enable such an approach, and the number of unresolved aspects 

relating to microstructure were too large to ignore. Nonetheless, attempts were made at 

establishing quantitative control of OFET performance through process control, with one 

example shown in Figure 43. 

Here, both mobility and threshold voltage were measured in situ on an OFET device 

that was being annealed. Unfortunately, annealing was not an especially effective 

processing technique for our devices: as can be seen, while holding the annealing 

temperature, mobility dropped substantially, although threshold voltage was reduced (a 
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value closer to 0 is better). Since P3HT is no longer considered a state-of-the-art conjugated 

polymer, controlling performance by reducing mobility was not likely to be publishable. 

However, for newer conjugated polymers with more of a mobility cushion, such a control 

strategy could help to resolve the frequently observed variance in mobility. Indeed, for real 

world applications, mobility will need to be controlled within very tight tolerances. 

This in situ approach happens to pair well with the Markov State Model + dynamic 

programming approach developed by the Grover group for in situ control of crystallization 

and colloidal self-assembly.64,147 Training runs are used to fill out the process parameter 

space and train the weights of a Markov State Model, indicating the effect of each process 

variable on performance at each discretized performance state (pair of mobility / threshold 

voltage). Kernelization of training run results can be used to fill out the model parameters 

for states that were not accessed during training runs. From here, dynamic programming is 

used to decide how to alter the process in situ to reach the desired performance target. The 

main difference between an OFET processing system and the crystallization systems 

considered previously is the lack of reversibility. Regardless, this approach could represent 

a unique approach for the optimization of OFET processing using in situ measurements. 
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APPENDIX A. GTFiber 1.0 

GTFiber was developed in two stages. In version 1, the bulk fiber structure was 

extracted as a “skeleton” – an image in which fibers were thinned to single pixel width, 

and each pixel had an associated orientation. From this data structure, fiber alignment and 

orientational order decay length could be reliably estimated, but fiber length and width 

were not measureable. The results still retained some sensitivity to image processing 

parameters, as will be shown. Even at this stage, however, the program proved to be useful.  

A.1. How to Spatially Average Orientations 

The structure tensor maps angles and vectors into a space in which linear averaging 

is valid, and thus filtering techniques such as Gaussian filtering can be effective. Consider, 

for example, the set: {89°, 90, 91, 269, 271, 180}. These angles all point more or less 

vertically, except for 180°, which is horizontal. Their numerical average is 165° and their 

median is 135.5°. These values are clearly not meaningful statistics for this set of angles – 

the average and median are both significantly horizontally biased. Statistics for angles are 

much more rationally computed in terms of the structure tensor, defined as:79 

 
𝐽 = cos	(𝜃)1 cos	(𝜃)sin	(𝜃)

cos	(𝜃)sin	(𝜃) sin	(𝜃)1
=

𝐽dd 𝐽de
𝐽de 𝐽ee

 (5) 

For two-component vectors, this is the same as taking the outer product. For the above set 

of angles, we end up with the following set of structure tensors (omitting the 3rd entry 

because it is identical to the 2nd): 
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Table 3 – Calculating average orientation with the structure tensor. 

Angle Jxx Jxy Jyy 

89° 0.0003 0.0174 0.999695 
90 0 0 1 
91 0.0003 -0.0174 0.999695 
269 0.0003 0.0174 0.999695 
271 0.0003 -0.0174 0.999695 
180 1 0 0 
Average 0.1669 0 0.8331 

 

Jxx describes the overall x-component of an orientation, i.e. “how horizontal”, Jyy describes 

the overall vertical component of an angle, and Jxy describes “how positively diagonal.” 

An angle of 45° would have the highest possible value of Jxy, whereas an angle of -45° 

would be the lowest. 

From the averages of each element of the J matrices, we re-form a matrix Javerage, 

and take its eigenvalues and eigenvectors: 

 𝑒𝑖𝑔 𝐽fgWIfhW = 𝑒𝑖𝑔 0.1669 0
0 0.8331 = 1 0

0 1 , 0.1669 0
0 0.8331  (6) 

The eigenvector with the highest eigenvalue (0.8331) indicates the orientation of Javerage, 

so [0; 1] is the average, a straight vertical vector, which makes perfect sense in the context 

of our hypothetical set. The above procedure is applied to find the black lines that are 

plotted at the average of each orientation distribution. When using the structure tensor for 

diffusion filtering, the scheme illustrated in Figure 44 applies. 
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Figure 44 – Diagram of the use of the structure tensor. An m × n image is converted 
into an m × n × 4 image, where each pixel has a corresponding Jxx, Jxy, and Jyy (Jxy is 
repeated and thus redundant). Gaussian filtering can be applied to each layer of the 
m × n × 4 image, and then each pixel’s structure tensor is reformed, eigenvectors are 
computed, and a filtered orientation is returned. 

A.2. Coherence-enhancing Anisotropic Diffusion Filtering 

A.2.1 Algorithmic Details 

Anisotropic diffusion filtering applies the principles of two-dimensional Fickian 

diffusion to the enhancement of images. Gray levels are the species undergoing diffusion, 

where “concentrations” can range from 0 (black) to 1 (white). The average gray level of 

the image is maintained, adherent to the equivalent of a mass balance in particulate 

diffusion. Isotropic diffusion would simply spread gray levels from bright regions to dark 

regions until a homogeneous gray level is obtained over the entire image – this is 

effectively the same thing as a recursively applied Gaussian filter. Anisotropic diffusion 

implies that the diffusivity is represented as a tensor, rather than a scalar, at each pixel. 

The m × n image u is modeled as gray values between 0 and 1 as a function of 

position and time: 

Orientation or 
Gradient 
Vector

Jxx Jxy

JyyJxy

Outer Product

Eigenvectors

One Pixel

Filtering 
can be 

performed 
on each 
element
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 𝑢 𝒙, 𝑡 , 𝐱 ∈ [ 00 , 𝑚𝑛 ] (7) 

The diffusion equation to be integrated is the following, with a no-flux boundary condition 

at the image edges: 

 𝜕𝑢
𝜕𝑡 = 𝑑𝑖𝑣 𝑫	∇𝑢 , 𝑡 ∈ (0,∞) (8) 

 −𝑫	∇𝑢 = 0, 𝑥 = 0,𝑚; 	𝑦 = 0, 𝑛 (9) 

where ∇𝑢 is the gradient of the image intensity and D is a 2 × 2 positive definite diffusion 

tensor. 

We would like D to strengthen diffusion along the fiber directions, so that gray 

levels diffuse along fiber backbones, but not perpendicular to them. Furthermore, we would 

like regions of the image with high directional confidence to diffuse more strongly. These 

directions and their confidences can be obtained from the structure tensor J described 

above in Section S1, by taking the outer product of the image gradient: 

 𝑱𝟎(∇𝑢) = ∇𝑢∇𝑢~ (10) 

A fiber can be visualized as a sharp ridge in the context of this analysis. The image gradient 

will be strongest at fibers’ edges, and will be pointed perpendicular to fibers’ backbone 

orientations. However, at the backbone of each fiber the image gradient will have a very 

low magnitude, and thus a weakly oriented structure tensor. To account for this, and to 

smooth noise in the locally calculated gradients, each element of J0 is convoluted with a 

Gaussian filter, Kρ: 

 𝑱𝝆(∇𝑢) = 𝐾� ∗ (∇𝑢∇𝑢~) (11) 

where ρ is the standard deviation of the Gaussian filter. Due to the unique properties of the 

structure tensor described above, this accomplishes a local averaging of orientations. The 
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more strongly oriented pixels will influence their neighbors; so the center of a fiber 

between two sharp edges will adopt a strong orientation pursuant to that of the edges. 

 Now the diffusion tensor can be constructed. It carries the same eigenvectors as Jρ, 

but its eigenvalues are replaced with values that enhance diffusion along the coherence 

orientation, or the fiber direction. The eigenvalues of Jρ are sorted so that: 

 𝜆Y ≥ 𝜆1 (12) 

and the eigenvector v1 therefore corresponds to the locally averaged gradient vector, and 

v2 corresponds with the desired coherence orientation. Coherence is a measure of the 

anisotropy of the structure tensor, calculated as: 

 𝜅 ≔ (𝜆Y − 𝜆1)1 (13) 

The coherence is used to formulate new eigenvalues for the diffusion tensor: 

 𝜆"Y ≔ 𝛼 (14) 

 𝜆"1 ≔
𝛼, 𝜅 = 0

𝛼 + 1 − 𝛼 exp	(−𝐶 𝜅), 𝜅 ≠ 0 
(15) 

In both of these equations, 𝛼 ∈ (0,1) is a small positive parameter that ensures finite 

isotropic diffusion even when no coherent structures are present. An 𝛼 of 1 results in 

perfectly isotropic diffusion, equivalent to a sequence of Gaussian filters. The anisotropic 

nature of the diffusion tensor comes from the second term of 𝜆"1. The parameter C acts as 

a threshold for 𝜅 above which the diffusion tensor will become strongly anisotropic, and 

below which diffusion will tend toward the standard isotropic case. 

To summarize, large local gradients in an image leads to a structure tensor with 

strongly differing eigenvalues, which in turn lead to a diffusion tensor with strongly 

differing eigenvalues. The only difference between the two tensors is that the structure 

tensor’s largest eigenvalue corresponds to the gradient direction, while the diffusion 
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tensor’s largest eigenvalue corresponds to the fiber direction, or coherence orientation. To 

mathematically construct the diffusion tensor D, we formulate a new matrix using the 

eigenvectors of Jρ and the new eigenvalues calculated in Eqns. 10 and 11: 

 𝑫 = 𝑽 𝜆"Y 0
0 𝜆"1

𝑽𝑻 (16) 

where V is the matrix containing the original eigenvectors of Jρ. Finally, the gray scale 

image is updated according to Eqns. 4 and 5 using an explicit Euler integration scheme and 

rotationally invariant kernels for spatial derivates.186 The default values of 𝛼, C, and the 

integration time step are 0.001, 1 × 10-10, and 0.15, respectively. The results of filtering are 

invariant to deviations in these parameters, so they are not explored in depth here. 

A.2.2 Effect of Orientation Smoothing 

 At the end of the day, only two parameters are truly adjustable in anisotropic 

diffusion filtering: the size of the Gaussian filter on the gradient orientations, ρ, and the 

diffusion time, which dictates how many time steps are taken when integrating. 

Heuristically, the value of ρ should not exceed the typical fiber width, otherwise 

orientations from high-intensity fibers will influence that of their neighbors. This is 

illustrated in Figure 45. Stronger structure tensor filtering leads to stronger measured local 

alignment, so this parameter is held as low as possible while an accurate segmentation is 

still obtained. As long as image scales and parameters are applied consistently, however, 

the trends in structural metrics will always hold. This source of variance is eliminated by 

vectorization, as shown in Appendix B. 
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Figure 45 – The effect of structure tensor smoothing. Standard deviation of 
orientation smoothing kernel in nm indicated at left, followed by the gray scale result 
of diffusion filtering, the Orientation Map, and an orientation distrubtion. Other 
parameters used for this filter: initial Gaussian smoothing, 10nm; diffusion time, 8s; 
top hat size, 30nm; adaptive thresholding; noise removal area, 3500 nm2; skeleton 
fringe removal, 40nm. 
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A.2.3 Effect of Diffusion Time 

    

Figure 46 – The effect of the “diffusion time” parameter on diffusion filtering results, 
from left to right: original gray scale, 1s diffusion time, 3s, 8s. Constant parameter 
values: initial Gaussian smoothing, 10nm; orientation smoothing, 30nm. 

Diffusion time is illustrated in Figure 46. Gray values diffuse by a default time step 

of 0.15s until a time specified by the user in the field “diffusion time”. The effect of time 

step is negligible, as long as it is fractions of a second. The only consideration for choosing 

a different time step would be for computational efficiency. However, as diffusion is 

allowed to proceed, one observes a pronounced smoothing of fibrillar regions. Wrinkles 

and kinks in fibers tend to be straightened, and segments that may have appeared to be 

separate may connect. CED filtering preserves the average intensity of the image, so no 

wash-out will occur. While the 8s diffusion time appears over-smoothed in the gray image, 

it yields a more accurate skeleton than shorter diffusion times. The orientation distribution 

and S2D are not strongly affected by diffusion time, so it is more of an aesthetic choice. The 

user is encouraged to explore this parameter through the GUI to determine what works best 

for their application. 

A.3. Top Hat Filtering, Thresholding, and Skeletonization 

A.3.1 Top Hat Filtering 
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 Top hat filtering enhances sharp details and flattens the background in images. Its 

name is derived from the shape of its structuring element, which looks similar to a top hat. 

The transformation consists of three steps: an erosion, a dilation, and a subtraction. The 

combination of erosion and dilation is called an image opening, so the top hat filter, in 

essence, subtracts from the original image the result of its opening. This is illustrated in 

Figure 47, using a structuring element of a disk of radius two pixels. 

    

Figure 47 – The top hat filtering process, from left to right: result of anisotropic 
diffusion filtering, result of image erosion, result of image dilation, and result of 
subtracting the dilated image from the result of anisotropic diffusion filtering. 

    

Figure 48 – The effect of the “top hat size” parameter on contrast enhancement, from 
left to right: initial result of diffusion filtering, result of 10nm top hat filter, 30nm, 
50nm. Constant parameter values: initial Gaussian smoothing, 10nm; orientation 
smoothing, 30nm; diffusion time, 8s. 

 The top hat filter is a robust contrast-enhancing filter that is incredibly effective 

after diffusion filtering has been applied. It enhances sharp peaks in an image and 

suppresses the background. The images in Figure 48 are all gray scale – still no 

thresholding has been applied. The top hat size parameter determines the radius of the disk-
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shaped structuring element used for the erosion and dilation operations performed during 

top hat filtering. It is apparent from these images that a top hat size greater than or equal to 

the smallest fiber width should be used; very small top hat size excessively erode the 

thinnest, lightest fibers. It should be noted that the actual top hat disk radius used in the 

program is converted from nm to pixels and rounded up to the nearest pixel size – only 

integers are allowed for this morphological operation. 

A.3.2 Thresholding Choices 

   

Figure 49 – Thresholding of original image. Left: original gray scale. Center: 
Automatic global threshold. Right: Adaptive threshold surface using Yanowitz-
Bruckstein method.187 

Figure 49 shows traditional thresholding approaches applied to the original gray 

scale image. Clearly the smoothing and contrast enhancing filters were necessary before 

thresholding. Two thresholding options are offered to convert the result of top hat filtering 

into a binary image: adaptive thresholding using the method introduced by Yanowitz and 

Bruckstein,187 and a simple global threshold. Noise removal is also offered to clean the 

resulting binarized image: connected components (contiguous white regions) of area less 

than the specified maximum noise area are removed. The effect of these operations are 

shown in Figure 50 and Figure 51. 
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Figure 50 – Thresholding of image after diffusion and top hat filtering. Left: gray 
scale top hat filter result. Center: global threshold at gray value of 0.3. Right: Noise 
removed if area < 3500 nm2. 

   

Figure 51 – Thresholding of image after diffusion and top hat filtering. Left: gray 
scale top hat filter result. Center: result of adaptive thresholding. Right: Noise 
removed if area < 3500 nm2. 

Since the contrast-enhanced diffusion and top hat filtered image is already so clear, 

thresholding is now trivially simple. Even a global threshold of 0.3 yields nearly the same 

result as a more advanced adaptive thresholding operation. Additionally, the binarized 

structure is very smooth, which aids in the skeletonization process. 
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A.3.3 Skeletonization 

   

Figure 52 – Skeletonization and trimming. Left: result of adaptive thresholding and 
noise removal. Center: result of skeletonization. Right: skeleton after removal of 
branches less than 40nm long. 

Skeletonization is the final processing step to be performed. It is a common 

morphological operation with a built-in MATLAB function that thins connected white 

components to single-pixel width. Bumps along the edges of the white components can 

cause the skeleton to produce small fringe branches along the main backbone, so a feature 

has been included that removes fringe branches of a specified length or less. Very few 

fringe branches can be seen in Figure 52, so a better example is provided in Figure 53. 

Essentially, this algorithm removes pixels if the sum of their geodesic distances from their 

nearest branch point and end point is less than the specified length, and that pixel lies 

between its nearest branch and end points (indicating that it is actually on a branch). 
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Figure 53 – Skeleton fringe trimming, before and after. 

A.3.4 Other Imaging Systems 

As long as an image contains fibers whose brightness contrasts substantially with 

the image background, contours can be extracted and analyzed, as demonstrated in Figure 

54. With different imaging systems, however, length scales can vary drastically. For the 10 

mm micro-CT image in Figure 54A, it is impractical to enter the image size in nanometers. 

In this case, simply enter 5000 nm as the image width, and use the default filter parameters 

that are pre-filled in the app window. The default parameters are optimized for a 5000 nm 

image and will generally yield a good first result. The results in Figure 54 A-C were 

obtained using this strategy. In general, the units of the filtering parameters should be 

determined relative to the specified image size. 
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Figure 54 – GTFiber applied to: (A) Micro-CT imaging (top) of a fiber composite, (B) 
SEM imaging of cellulose fibrils (reproduced from Ref. 4 with permission from the 
Royal Society of Chemistry),134 (C) TEM imaging of fibrillar protein assemblies. 
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APPENDIX B. GTFiber 2.0 

In version 2 of GTFiber, length and width measurement are introduced through a 

vectorization and segment matching and reconstruction process. This has the added benefit 

of removing the sensitivity to orientation smoothing. It also permits the measurement of 

fiber curvature, as well as the generation of a number of striking data visualizations. 

At its core, GTFiber is a collection of image processing and fiber modeling 

algorithms that enable the segmentation, vectorization and analysis of two-dimensional 

images of dense populations of fibers. Segmentation refers to the classification of which 

pixels are in fibers. Vectorization refers to the identification and grouping of pixels that 

belong to the same fiber, followed by their conversion to a sequence of vectors, called a 

contour. Segmentation enables the extraction of orientational order parameters, while 

vectorization further enables the estimation of fiber length, width, and curvature 

distributions, as well as the juxtaposition of higher-resolution structural simulations. The 

segmentation process encompasses algorithm steps 1–5 (Figure 55), while steps 6 and 7 

make up the vectorization process.  
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Figure 55 – Overview of the GTFiber algorithm stack and data structures. 
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B.1. Fiber Vectorization 

While segmentation was detailed in Appendix A,114 we review the main steps as 

well as new additions in Figure 55. The first goal is to obtain an image in which pixels in 

fibers are white and the background is black – referred to as binarization. The result in 

Figure 55b is obtained after applying an anisotropic diffusion filter (for oriented 

smoothing), a top hat filter (to enhance ridge-like objects), an adaptive threshold (accounts 

for long-range variations in pixel brightness), and noise removal (removes connected 

objects less than a specified area). To vectorized fibers, however, we require a list of points 

along the backbone of each fiber in linear order, i.e. ordered from the start to the end of 

the fiber. The binarized image contains branched regions which, while physically possible 

from a self-assembly standpoint, make it significantly more complicated to obtain an 

ordered list of points for each fiber. 

 

Figure 56 – Segmentation, skeletonization, and segment isolation in GTFiber. 

Skeletonization solves this problem by thinning a black and white image so that the 

white regions have single-pixel width, as shown in Figure 55c. This step includes a pruning 

algorithm that removes branches of the skeleton less than a specified length – usually the 

width of the fibers in question. In the skeletonized image, branch points are trivial to 
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identify and remove, yielding an image of unbranched fiber segments, shown in Figure 

55d. In addition to branch point removal, segments with extremely high curvature (over 

the specified maximum, described below) are broken as well. However, in removing 

branch points, it is likely that some fibers are broken into smaller segments, and need to be 

reconstructed. To do this, we first vectorized each of these isolated, unbranched segments. 

B.1.1  Segment Vectorization 

Vectorization utilizes the Active Contour model to convert a list of pixels into a list 

of vectors. Active contours can be described as a discrete contour (a sequence of equally-

sized segment vectors) with an internal energy term penalizing bending between 

neighboring segments, and an external energy term derived from the surrounding image 

gradient, a vector field which points toward the bright central line of a fiber-like object. 

The result is a list of vectors which obey structural constraints such as limits on curvature, 

while conforming to the region of an image that appears the most fiber-like. It is the core 

algorithm in FiberApp, by Usov et al., in which a user identifies fibers of interest by 

manually clicking on points along their backbone. In the high-throughput fiber extraction 

algorithm introduced in GTFiber, fibers are first broken down into isolated skeletal 

segments, which can be represented as a list of pixels. The Active Contour Model is used 

here to convert that list of pixels, which have integer coordinates, to a list of vectors, which 

have continuous x-y coordinates in units of nanometers. For further reading see Usov et al. 

and Smith et al.74,188 

In 2D, let  r (s) = ( x (s), y (s) ), s ∈ [ 0, L ] be the parametric representation of an 

open contour (Figure 57), where s represents arc length along the open curve, and L is the 
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length of the active contour. The starting and the ending points of the active contour are s = 

0 and s = L respectively. A set of N discrete sampling points ri = ( xi, yi ), i = 1,2,…N, is 

sampled at equally spaced intervals from the active contour to represent it. 

 

Figure 57 – Discretization of a fiber, where s is the path length coordinate and r is the 
tangent vector at s. F is the stretching force applied to the ends of the contour. 

The internal energy of an active contour penalizes its curvature, smoothing the 

abrupt noise influence from the image. The internal energy term, Eint, is defined as: 

 
𝐸V=/ = 𝛽 𝒓�� 𝑠 1

�

�
𝑑𝑠 (17) 

where rss(s) is the second derivative of the tangent vector, and β is a coefficient that 

penalizes local bending. The external energy consists of two terms: the image term Eimg 

and the stretching term Estr: 
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�

�
 (18) 

where two additional weighting constants are applied, k1, which determines how strongly 

the contour seeks the brightest areas of the image, and k2, which determines how strongly 

the contour will stretch at its ends. The image energy, Eimg, is simply the inverse intensity 

of the image at the point s, which is interpolated between pixels. Thus, minimizing Eimg 

equates with moving the points of the contour along the image gradient (illustrated in 

Figure 58b). 
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Estr is derived from a force applied to the ends of the contour (s=0 and s=L): 

 
𝐹 𝒓 𝑠 =

𝐼 𝒓 𝑠
𝐼C

 (19) 
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−𝐹 𝒓 𝑠 	𝒕 𝑠 							𝑠 = 0
			𝐹 𝒓 𝑠 	𝒕 𝑠 							𝑠 = 𝐿

															0																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (20) 

The force, F, is applied only to the endpoints, tangential to the terminating unit vectors, 

t(s) at each end. Its magnitude is proportional to the image intensity at each tip relative to 

fiber intensity. The contour is stretched if its ends are still in bright regions, but it is 

contracted if its ends lie in dark regions. 

Figure 58 provides a visual overview of the active contours algorithm. The contour 

is initialized with some set of points (red circles, Figure 58a), from which equally spaced 

initialization points are interpolated (blue circles, Figure 58a) at a specified step length. 

These points are equilibrated by iteratively shifting their x-y coordinates to minimize the 

sum of Eint and Eext using an implicit Euler integration scheme for a specified number of 

iterations – 10 is sufficient in this case (magenta dots and circles, Figure 58b). However, 

being a local energy minimization, a very good initialization is essential to obtaining a 

good contour. The natural choice for the initialization is the set of pixels from each isolated, 

unbranched skeletal segment, shown in Figure 58d. For each segment found in an image, 

its skeletal pixels are fed to the active contours algorithm and the contour’s energy is 

minimized on the original grayscale image. The result of this is shown in Figure 58e. 
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Figure 58 – Energy minimization of an active contour and visualizations of the first 
three stages of GTFiber. (a) Example initialization of an active contour. Red circles: 
three initialization points. Blue circles: distributed initialization points interpolated 
between the red initialization points, but with 3-pixel spacing. (b) Energy 
minimization of the active contour (10 iterations), with b = 5, k1 = 20, and k2 = 10. 
Image gradient vector field overlaid for illustrative purposes. (c) Original grayscale 
image. (d) Skeletonized image extracted using GTFiber’s image processing 
operations. (e) Plot of the vectorized version of the skeleton in (d) using Matlab’s line 
plotting function (with anti-aliasing). 

Since the skeletal segment pixels are an extremely good initial guess for Active 

Contours, a set of default parameters work in almost every case here. The stretching 

parameter, k2, is set to zero, the image gradient parameter, k1, is set to 20, and the curvature 

penalty, b, is set to 5. These parameters ensure that the initial segment vectorization is not 

significantly different than the skeleton – however the Active Contours algorithm does 

smooth the more abrupt features of the skeleton. The most important parameter to select 
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here is the step length, which determines how many points are used to vectorize each 

segment. The step length should be short enough to capture the local curvature of the fibers, 

but not shorter than two pixels – shorter step lengths increase processing time. Here, a 30 

nm (3 pixel) step length is used. 

While Figure 58d and Figure 57e look nominally similar (which they should), the 

underlying data structure of the vectorized segments is more powerful than the skeleton in 

that mathematically defined measures of length, curvature and orientation can be extracted 

from it. First, segments that were broken apart in Figure 56d must be reconstructed. 

B.1.2 Fiber Reconstruction 

The current state of the art in contour reconstruction involves minimizing the cost 

of path ensembles through a graph representation of the contour network.71,72 This 

approach is reliant on a clean pixel-wise segmentation, which is highly dependent on the 

level of image noise. The smoothing filter and adaptive thresholding algorithm in GTFiber 

alleviate many problems due to noise and inconsistent illumination, but an image with 

hundreds of fibers presents many cases of fibers incorrectly broken into smaller segments, 

or overlapping fibers fused into branched structures. A graph theory approach requires all 

fibers to be fully connected by nodes of the skeleton, which is not always the case. It is 

also a computationally expensive approach, requiring the enumeration of many paths 

through a complex network of nodes and edges. 
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Figure 59 – (a) A portion of a raw AFM image. (b) Line plot of the broken, vectorized 
segments.  

We found that the most robust approach to reconstruction in our case was to break 

the entire image skeleton into unbranched segments, then rebuild or “stitch” the fibers from 

this new starting point. Once all segments have been broken down and vectorized, they 

must be stitched together into fibers. Stitching of neighboring segments is decided through 

a two step process: identification of candidate matches and match scoring. The example 

shown in Figure 59 was chosen because it represents an extremely difficult reconstruction 

decision: even from a human perspective, an argument could be made for stitching s0 with 

either s1 or s2. While most cases are much more straightforward and do not require a 

complex reconstruction algorithm, this case is used to illustrate the level of control 

provided by GTFiber, if necessary. 

The scoring and matching algorithm is laid out in Figure 60. First, candidate 

matches are identified by projecting a search kernel out from the end of s0 in the direction 

of its terminating vector. Endpoints of other segments falling within this search kernel are 

scored for matching. While it appears in Figure 60a that three segments may be candidates, 

we consider only s1 and s2 in this example. One could in theory generate a score between 
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each segment and each other segment in the entire image, but the search kernel approach 

drastically reduces the computational burden of match scoring. 

 

Figure 60 – Illustration of segment matching and scoring. (a) Candidate endpoints 
are identified through a projected search kernel. (b) Distances are measured between 
the searching endpoint and its match endpoints. (c) A test fit of an active contour 
combining segments s0 and s1. Curvature at each point is indicated by the color scale 
at right in units of 1/pixel. Red boxes indicate the points considered for curvature 
scoring. (d) Test fit of an active contour between segments s0 and s2. 
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 The score for a match penalizes the distance between endpoints and the curvature 

added by stitching the two segments together, using the following formula: 

 𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 V

=
																	𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑																𝑖𝑓	𝑑V > 𝑑�fd	𝑜𝑟	𝑐V > 𝑐�fd
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+
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																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
(21) 

where di is the distance between the searching endpoint and the candidate match’s 

endpoint, and ci is the maximum curvature of all contour points added between the 

segments during stitching. Each of these components of the score are scaled by the user-

specified parameters dmax and cmax, the maximum allowable endpoint separation and 

curvature, respectively. If either component exceeds its specified maximum, the match is 

disqualified. Matches for every endpoint of every segment are ranked and mutual top 

matches are awarded first, followed by top choice / second choice matches if neither 

endpoint is already involved in a top / top match; the guiding principle being that each 

endpoint can only match once. 

 The distance score is trivial to calculate, as illustrated in Figure 60b, but the 

curvature score is slightly more involved. The goal of the curvature score is to determine 

how much curvature is added by stitching two segments together. The curvature, k, at each 

point in a contour is defined at each point as: 

 𝜅 =
𝑑𝜙
𝑑𝑠  (22) 
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where f is the angle of the contour’s tangent vector in radians and s is arc length along the 

contour. Since each active contour is parameterized as r (s) = ( x (s), y (s) ), the following 

formula for curvature in a two-dimensional curve applies189: 

 
𝜅 =

𝑥�𝑦�� − 𝑦′𝑥′′
𝑥�1 + 𝑦�1 �/1 (23) 

where derivatives are computed using centered finite differences along the point list of an 

active contour. Curvature at each point is plotted in Figure 60 using a color scale. 

 To score curvature between two segments, a new active contour is fit to the image 

using the points from the matched segments as an initialization. These test fits are 

illustrated for segments s1 and s2 in Figure 60c & d, respectively. Note that the color scale 

is narrower in these images to highlight the differences. Only new points falling in the gap 

between the matched endpoints are considered for the curvature score, indicated by red 

boxes. The maximum curvature from among these points is used as the score ci, which is 

then scaled by the chosen cmax. 

 Once all segment endpoints have found their matches, if any, the final vectorized 

fibers are determined by fitting an active contour using the set of all points in all of a fiber’s 

constituent segments as an initialization. For the region considered in this example, the 

result of this can be seen in Figure 61b, including a curvature color overlay. Note that the 

segment at the other end of s0 in Figure 59b was also correctly stitched. 
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Figure 61 – (a) Original AFM image. (b) Vectorized fibers with curvature indicated 
by a color scale at each point. 

B.2. Order Parameter Calculation 

 Having vectorized fiber contours permits the calculation of several structural order 

parameters. First, we go over the calculation of Sfull and lC, (fiber alignment and 

orientational order decay length) followed by rFL (fiber length density). Sfull and lC are 

orientational order parameters derived from a plot of S2D calculated at expanding frame 

sizes averaged across the entire image, as illustrated in Figure 62. S2D is a standard 

orientational order parameter that calculates the alignment of a population of vectors 

relative to their director. Here, it varies from 0 to 1 because the director is defined as the 

average orientation of the vectors. At very small frame sizes, the contour vectors of fibers 

are highly aligned because only vectors from a single fiber are considered. As the frame 

expands, however, alignment decreases. Small fluctuations in this curve are normal, but 

large fluctuations indicate that a larger image size should be used to quantify orientational 

order. The data are well fit by an exponential decay curve, modified with an asymptote. 

The characteristic length of exponential decay is defined as lC (thus “decay length”), while 

the height of the asymptote is defined as Sfull, for “full image orientational order.” In 
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practice, Sfull is a useful metric to quantify overall fiber alignment, while lC can be used to 

quantify various types of local disorder, as described in the main text. 

 

Figure 62 – Calculation of Sfull and lC. 

 The calculation of fiber length density, or rFL, is more straightforward. One simply 

measures the total length of fibers within a given frame, and divides by the area of that 

frame, as illustrated in Figure 63. It is similar to the area fraction of fibers, but is invariant 

to their width. One could also imagine calculating a decay function for rFL as a function of 

frame size, similar to orientational order – this would quantify spatial inhomogeneities in 



 154 

fiber packing. Since P3HT nanofibers tend to pack quite evenly, this was not considered in 

the current study. 

 

 

Figure 63 – Calculation of fiber length density. 

 Finally, the calculation of fiber length and width distributions was added to 

GTFiber. Calculating the fiber length distribution is extremely straightforward: each fiber’s 

length equals the number of vectors in its contour times the vector step length. Any fiber 

containing a point that falls within 5% of the edge of the image is removed from the fiber 

length distribution to avoid edge effects. Fiber width is slightly less trivial, and is illustrated 

in Figure 64. For each fiber, 15 points are selected along its contour to sample its width. 

The black and white binarized image is used for this sampling. Line segments are projected 

perpendicular from the sampling points until they hit a black pixel, yielding a single fiber 

width sample. The width of that fiber is taken as the median of these samples. If a fiber 

contains less than 15 points, all of its points are used. Because GTFiber is optimized for 
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bulk fibrillar structures with large fiber populations, fiber widths are frequently on the order 

of <10 pixels. This means that fiber width calculation is extremely sensitive to the 

binarization process. For this reason, the use of GTFiber for quantitative fiber width 

measurement is discouraged unless fibers are more than 10 pixels wide. 

 

Figure 64 – Calculation of fiber width distributions. 

One advantage of these order parameters is that they are defined entirely in physical 

units, and can thus be calculated on images of any size – but care should be taken when 

comparing them across different sized images. The dataset under consideration is 

composed of images ranging from 2 – 10 µm in width. Of these, 21 are 2 µm, 12 are 10 

µm, while the remaining 104 are either 4, 5, or 7 µm. GTFiber automatically scales image 

processing parameters according to image size to ensure consistent segmentation across 

length scales, however, some measurements are inherently affected by image scale. For 

example, fiber length density is generally higher for smaller images because they pick up 

finer details that are lost in larger images. Also in smaller images, orientational order may 

not decay to an equilibrium value on the length scale of the image, resulting in an 

overestimated Sfull. On the contrary, fiber widths are more accurately calculated in small 
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images where fibers are >10 pixels wide, rather than large images where they may be only 

a couple of pixels wide. 

B.3. Accuracy and Sensitivity Analysis 

 The goal of GTFiber software is to provide accurate measurements of fibrillar 

structures. In quantifying accuracy, it is important to consider segmentation accuracy as 

well as measurement accuracy. In other words, did the program classify the correct pixels 

as fibers, and did it produce the same measurements of the structure that a human would? 

 This leads naturally to a machine learning approach to parameter selection: provide 

a manually segmented training set (i.e. trace all fibers by hand), then train the image 

processing parameters so that they yield the same results as the manual segmentation. The 

problem with this approach for many researchers is that the generation of an adequate 

training set is a very tedious process, and by the end of it, they may already have all the 

analytical results they required in the first place. The philosophy behind GTFiber is that 

researchers should be able to quantify what they see in their images instantly without 

performing any manual segmentation. In general, the default parameters of GTFiber yield 

a reasonable segmentation result and only minor tweaking is required for further 

refinement. Data visualizations are provided at each step of processing so that the user can 

identify where errors occur and ultimately obtain a visually consistent segmentation that 

yields accurate measurements. 

To quantify the accuracy and sensitivity of GTFiber, we performed a manual 

segmentation on example images and trained GTFiber’s parameters to minimize the total 

percent error in the five main structural measurements. Optimized parameters were 
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obtained by gradient descent, minimizing the Euclidean distance between the structural 

metrics produced from a manual tracing in FiberApp and from automated extraction in 

GTFiber. The optimal parameters from training each individual image were averaged to 

obtain a universal parameter set, the results from which are presented in Table 4. 

By visual inspection, the vectorized fiber plots look almost identical for all three 

cases, except possibly for the case of “short, dense fibers”. In the course of training, it was 

noted that GTFiber picks up on extremely small “fibers” that humans inconsistently 

identify. To mitigate the influence of these short fiber stubs, a “minimum fiber length” 

parameter was introduced – here, metrics are compared considering only the fibers 

exceeding 100 nm in length. Thus, while the visual segmentation results may not appear to 

be perfect, the structural metrics are largely accurate to within 10%, as tabulated in the 

continuation of Table 4 on the page after the image results. Larger percent errors are only 

observed in cases where the measured value is low to begin with. The optimized parameters 

are also reported, which provide insight into heuristics to use for setting parameters. A 

guide to parameter selection is provided in Table 6 – most parameters’ optimal settings are 

a simple function of the image size and the anticipated fiber width. 
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Table 4 – Accuracy of GTFiber in four different cases, using the same parameters, 
compared with manual tracing. 
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 Short,	Sparse	Fibers Long,	Sparse	Fibers 
 Manual	 GTFiber	 ∆	 %	 Manual	 GTFiber	 ∆	 %	
Sfull	 0.11	 0.09	 0.02	 16.04	 0.26	 0.3	 0.04	 14.33	
Decay	Length	(nm)	 421	 442	 20.74	 4.92	 774	 760	 14.00	 1.81	
Mean	Length	(nm)	 219	 235	 16.41	 7.51	 463	 424	 39.03	 8.43	
Median	Length	(nm)	 203	 210	 7.40	 3.65	 382	 360	 21.60	 5.66	
Fiber	Length	Density	(1/µm)	 6.33	 6.80	 0.47	 7.39	 7.31	 7.54	 0.23	 3.15	

	         
 Short,	Dense	Fibers Long,	Dense	Fibers 
 Manual	 GTFiber	 ∆	 %	 Manual	 GTFiber	 ∆	 %	

Sfull	 0.68	 0.72	 0.04	 6.60	 0.84	 0.86	 0.02	 2.04	
Decay	Length	(nm)	 261	 304	 43.13	 16.53	 329	 334	 4.85	 1.47	
Mean	Length	(nm)	 342	 349	 7.86	 2.30	 483	 507	 24.52	 5.08	
Median	Length	(nm)	 270	 270	 0.00	 0.00	 348	 330	 18.00	 5.17	
Fiber	Length	Density	(1/µm)	 12.87	 12.53	 0.34	 2.65	 9.24	 10.02	 0.78	 8.43	

 

Parameters	 Value	 	 Metric	 Average	Error	
Gaussian	Smoothing	(nm)	 5	 	 Sfull	 0.03	
Orientation	Smoothing	(nm)	 15	 	 Decay	Length	(nm)	 20.68	
Diffusion	Time	(s)	 3	 	 Mean	Length	(nm)	 21.95	
Top	Hat	Size	(nm)	 40	 	 Median	Length	(nm)	 11.75	
Max	Noise	Area	(nm2)	 1500	 	 Fiber	Length	Density	(1/µm)	 0.45	
Skeletal	Fringe	Removal	(nm)	 60	 	   
Stitch	Gap	Length	(nm)	 50	 	   
Max	Curvature	(1/µm)	 7	 	   
Vector	Step	Length	(nm)	 30	 	   
Minimum	Length	(nm)	 100	 	   

 

Overall, however, GTFiber is relatively insensitive to parameter selection once a 

visually consistent segmentation has been achieved. A sensitivity analysis was performed 

to demonstrate this, presented in Table 5. Cells in this table quantify the partial derivative 

of each structural measurement with respect to each image processing parameter, 

calculated around the optimal parameter values from Table 4. A value of 1 indicates a 1% 

change in a structural metric per each 1% change in the respective parameters. A value of 

0.01, then, indicates a 0.01% change in a structural metric per 1% change in the indicated 

parameter. 

Vector step length appears to be the most influential parameter, especially in its 

influence on fiber length. This makes sense, as the step size also defines the minimum 
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measurable fiber length, which significantly affects the length distribution. Step length 

should be selected to be as low as possible, but should generally not be lower than 3 pixels. 

The mean fiber length is also affected strongly by the maximum stitching gap as well as 

the maximum curvature parameters, which makes sense, as increasing these parameters 

will favor stitching more segments together, creating a top-heavy length distribution. The 

remaining structural metrics have minimal sensitivity to changes in the image processing 

parameters. 

Table 5 – Sensitivity of GTFiber parameters: percent change in each structural 
metric per percent change in each algorithm parameter. 

	 Sfull	 Decay	Length	 Mean	Length	 Fiber	Length	Density	
Gaussian	Smoothing	 0.077	 0.057	 0.010	 0.073	
Orientation	Smoothing	 0.005	 0.038	 0.049	 0.058	
Diffusion	Time	 0.032	 0.035	 0.009	 0.014	
Top	Hat	Size	 0.020	 0.013	 0.049	 0.014	
Max	Noise	Area	 0.006	 0.028	 0.058	 0.016	
Skeletal	Fringe	Removal	 0.046	 0.089	 0.043	 0.050	
Stitch	Gap	Length	 0.019	 0.003	 0.151	 0.022	
Max	Curvature	 0.054	 0.004	 0.393	 0.031	
Vector	Step	Length	 0.054	 0.208	 0.907	 0.048	

 

Since human tracing is still prone to errors, another way to analyze extraction 

accuracy is with a known population of fibers. This could be accomplished with simulated 

images, or even more simply, with pictures of actual wires dispersed on a flat surface. A 

set of 50 images was taken of flexible white wires dispersed on black fabric, while 

attempting to create a variety of complex and/or ambiguous overlap situations. The images 

were then analyzed with GTFiber at the default parameter settings, yielding a fiber count 

and an average fiber length for each image. The true count was 26 fibers and the true mean 

length was 2.6 inches. The results are illustrated in Figure 65. Fiber counts and mean 
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lengths were generally overestimated but fell within 15% of their true value, consistent 

with the results of the previous optimization. 

 

Figure 65 – (a) Representative pictures of flexible white wires on a black fabric 
background. (b) Histogram of fiber counts from all 50 pictures. (c) Histogram of mean 
fiber lengths from all 50 pictures; (inset) true fiber length distribution of the wire 
population. 

 Fiber extraction and measurement from images is a challenging problem in 

computer vision. Each new set of images poses a different set of challenges, and may not 

be amenable to the current approach. Images that create problems for GTFiber are 

highlighted in Figure 66. 
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Figure 66 – Problematic cases for GTFiber. 

These images exemplify some of the most difficult cases in fiber extraction. Indeed, 

even a human would be hard-pressed to definitively identify contiguous fibers in these 

images. In the image on the left, the bodies of the fibers are not significantly brighter than 

the background and are instead defined by the dark clouds around their edges. Thick fiber 

bundles create dark regions with high degrees of overlap that are nearly impossible to 

disentangle by eye. In the image on the right, a combination of large variations in fiber 

curvature and brightness, dense, overlapping clumps and extremely low contrast cause 

significant difficulty. To solve this problem in the general case, it is likely that a generative 

adversarial convolutional neural net approach would be required, combining both 

extensive simulations of fiber images as well as a significant number of accurately hand-

labeled images capturing a wide variety of fiber populations, imaging techniques, and 

noise.153,190 
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B.4. User Interface and Parameter Selection 

Download software: gtfiber.github.io 

 The user interface is designed to produce measurements as quickly as possible, 

while providing visualizations that show what is happening at every step during processing. 

To analyze an image with the default settings, follow these steps: 

1) File -> Load Image 
2) Enter image width in nanometers when prompted 
3) Click “Run Filter” and wait for progress bar to complete 
4) Click “Stitch Fibers” and wait for progress bar to complete 
5) Click on any of the plotting and visualization options 

If the skeletonized image that appears after “Run Filter” matches your original well, fiber 

stitching should be successful. If not, see the guide below for further parameter tweaking. 

Bear in mind that not all images of fibers are amenable to this approach (see Figure 66). 

Feel free to email the author for help with installation or usage. 
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Figure 67 – GTFiber user interface and representative visualizations. 
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Table 6 – Guide to parameter selection and tuning. 

Parameter	 	 Recommended	Value	 How	to	Troubleshoot	
Gaussian	Smoothing	(nm)	 Half	fiber	width	 If	fibers	are	wide,	turn	up.	
Orientation	Smoothing	(nm)	 Fiber	width	 Keep	as	low	as	possible.	Only	increase	

if	fiber	edges	are	very	jagged	
Diffusion	Time	(s)	 	 3–7	seconds	 If	 thresholding	results	 in	holes	 inside	

fibers,	turn	up.	If	fibers	are	being	run	
together,	turn	down.	

Top	Hat	Size	(nm)	 	 2x	fiber	width	 If	 wider	 fibers	 are	 getting	 lost,	 turn	
this	 up.	 Click	 between	 displaying	
Diffusion	 Filter	 result	 and	 Top	 Hat	
result	to	see	the	effect.	

Max	Noise	Area	(nm2)	 	 Area	 of	 shortest	 fiber	
(fiber	 width	 x	 min.	
length)	(~1500	nm2	for	
a	5	x	5	µm	image).	

Click	 between	 displaying	 the	
Thresholding	 result	 and	 the	 Noise	
Removal	 result	 to	 see	 what	 this	 is	
filtering	 out.	 If	 adaptive	 thresholding	
is	 bringing	 out	 a	 lot	 of	 noise,	 try	 a	
Global	 Threshold	 with	 a	 value	
between	0.4	and	0.6.	

Skeletal	Fringe	Removal	(nm)	 2x	fiber	width	 Click	between	displaying	Skeleton	and	
Fringe	 Removal	 to	 see	 what	 this	
removes.	If	the	skeleton	still	has	lots	of	
“spurs”	 or	 “fringes”	 after	 Fringe	
Removal,	turn	this	up.	

Stitch	Gap	Length	(nm)	 3x	fiber	width	 After	 running	 “Stitch	 Fibers”,	 click	
between	 displaying	 Fiber	 Segments	
and	 Stitched	 Fibers.	 If	 segments	 are	
being	combined	that	are	too	far	apart,	
turn	this	down.	

Max	Curvature	(µm-1)	 10	 If	 stitched	 fibers	 have	 unrealistic	
bends,	turn	down.	If	segments	are	not	
being	 stitched	 even	 though	 they	
should	be,	try	turning	up.	

Vector	Step	Length	(nm)	 2x	fiber	width	 For	a	5µm,	512x512	image,	30	nm	(3	
pixels,	 or	 0.6%	 of	 image	 width)	 was	
ideal.	 For	 higher	 resolution	 images,	
turn	up.	

Min.	Fiber	Length	(nm)	 No	recommendation	 Start	 at	 0,	 turn	 up	 until	 small	
“nuisance”	fibers	are	gone.	
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APPENDIX C. The OFET Database 

C.1. Databases Drive Reproducibility 

Academia is in the midst of a so-called reproducibility crisis.191,192 While this has been 

publicized largely in the life sciences, it is nonetheless a concern for research in 

nanomaterials.193 Experimental systems have grown in complexity, data has grown in 

volume and velocity, and analysis is now performed by multiple layers of computing 

systems, resulting in published figures that are very far removed from the raw data used to 

generate them. Single words in a manuscript can now represent thousands of lines of 

computer code or a highly sensitive experimental method developed over multiple studies. 

Therein lies the heart of the reproducibility crisis: in the amount of information assumed 

to have been conveyed in the words of a text document. 

Journals and research consortia have combatted this problem by setting up 

centralized data repositories for research methods, data, and analytical codes.194 For 

example, in the field of Proteomics, the PRIDE Archive provides an explorable repository 

of mass spectrometry data from proteomics research, promoting transparency through the 

entire data analysis process.195 Organic synthesis has benefitted from searchable databases 

like Scifinder® or Reaxys®. Material property simulations have benefitted more recently 

from the establishment of the Materials Genome Initiative and online collaborative 

organizations like nanoHUB.76,196 It is recognized that the volume and velocity of materials 

research data will soon reach a threshold across which large data repositories and tools 

from data science will be required for management and analysis.197 The same will 

undoubtedly be true for nanomaterials research. 
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Exploratory nanomaterials research data presents a greater challenge due to the 

variability of types of information presented and the speed with which reporting practices 

change. This is not so different from an auction website like eBay, where sellers attempt to 

provide as detailed a description of their item as possible, but the relevant descriptive 

features of a given item are determined more or less by the marketplace, which is constantly 

changing. eBay can give sellers suggestions on what information to provide based on the 

listings of similar items. For example, if one were to sell a wristwatch, eBay suggests that 

the seller specify the band material and the movement mechanism based on the listings of 

similar items. In a similar vein, the Nature publishing group recently introduced an 

initiative to provide authors suggestions of information to include in methods sections.193 

Information like instrument settings and environmental conditions, referred to as metadata, 

can have a huge influence on measured material performance and is a vital part of any data 

repository. We aim to demonstrate the value of cataloging experimental metadata using the 

system of the solution-processed polymeric transistor as a case study. 

 Solution processable polymeric semiconductors are a promising class of electronic 

material for a variety of reasons: they can be coated on large areas, are mechanically 

flexible, and could enable high throughput additive manufacturing techniques.11,198–201 

Commercial applications include solar energy, display, and sensing technologies.5,6,9,10,15 

For almost two decades, the organic field effect transistor (OFET) has been used as a 

platform to study the process-structure-property relationships in polymeric 

semiconductors, because it is relevant to various applications, a facile platform for thin 

film deposition, and enables the calculation of charge carrier mobility (mobility), an 

important figure of merit for the performance of a given device.84 Mobility is essentially a 
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model parameter defined as the velocity of a charge per applied electric field in a material 

sample; it has units of cm2 V-1 s-1 and is very sensitive to starting material, processing, 

device layout, and calculation method. Poly(3-hexylthiophene) (P3HT) is frequently used 

as a model material in studies of the effects of processing conditions on OFET mobility. 

We compile data from over 200 P3HT-based OFET devices published across the literature 

to envision what an experimental research database would look like for a nanomaterial 

system and how it could be used to generate physical insight as well as improve the 

reproducibility of experimental studies. 
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C.2. Database Curation 

 

Figure 68 – Diagram of the process of fabricating and characterizing a P3HT-based 
OFET device. Below: list of all process variables included in our database. 

 Publications were selected for the database based on the following criteria: (1) the 

study must involve OFET devices whose active layer was comprised of neat P3HT, (2) 

mobility must be reported at room temperature, and (3) a majority of the relevant process 

and device parameters must be reported.26–28,35,40,49,80–82,85–87,89,90,202–206 The parameters that 

were recorded in the database are enumerated in Figure 68. They comprise everything from 

the molecular parameters of the starting material, to the machine settings of the various 

deposition techniques, to the analytical methods used to calculate mobility from the 

current-voltage measurements on the device.  

Very few papers contained the complete set of desired processing information; the 

dataset is not sparse by any means, but missing information is a significant problem. Choi 

et al. discuss this further in an article on the best practices for reporting on OFET device 
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fabrication.207 The dataset is also wildly diverse, comprised of text-based designators (e.g. 

bottom-gate, bottom-contact architecture or spin-coated…), chemical compounds 

(chloroform, chlorobenzene, acetone…), numeric values (5 mg/mL, 40 kD…), numeric 

ranges (20 – 50 nm), and even categories with mixed types (regioregularity is listed 

variously as a percentage or simply “highly regioregular”). 

Data entry was performed in Excel, with each study receiving its own self-

contained spreadsheet to handle all of this information. Mobility, typically presented in a 

graph, was extracted from figures using DataThief [www.datathief.org], a semi-automatic 

tool that can reliably extract quantitative data from scatter plots up to 3 significant figures. 

MATLAB scripts were written to compile the database into a structure array, filter and 

search the devices, and plot the results. For example, a one-line function call can find all 

devices made with chloroform as a solvent on a bottom-gate, bottom-contact architecture 

with gold electrodes, and plot the mobility of the filtered devices against their molecular 

weight. The entire database with accompanying graphical user interface is available for 

download from a GitHub repository at [http://www.github.com/Imperssonator/OFET-

Database]. We now present select examples of the trends and insight that can be extracted 

from this database. 
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C.3. Results 

C.3.1 Mobility versus Molecular Weight Distribution 

 

Figure 69 – (A) Hole mobility versus Mn (in kilodaltons) for 218 devices across the 
literature. Note the log scale on the y-axis. (B) Mobility versus polydispersity index 
for a subset (146) of the devices in (A). Markers are semi-transparent so that high 
data densities appear darker. 

The first widely reported process-property trend in the literature is that of increasing 

mobility with molecular weight, plotted in Figure 69A. Kline et al., Zen et al., and Verilhac 

et al. conducted the seminal studies on this parameter, concluding variously that low 

molecular weights (< 20,000 g mol-1) introduce inherent crystalline disorder that limits 

their overall performance, while higher molecular weights may introduce chains that are 

long enough to extend across grain boundaries, providing high-mobility pathways for 

charge transport.26,35,36,82,204 

Polydispersity index (PDI) is more difficult to study as a process parameter, yet our 

dataset contains 146 devices for which PDI has been reported. It displays approximately 
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the same trend as molecular weight, as shown in Figure 69B, with devices with the lowest 

PDI showing a wider spread that encompasses very low performance devices (< 10-4 cm2 

V-1 s-1). It is possible that this is due to a correlation between PDI and molecular weight, 

however this correlation is quite weak (R2 = 0.4 from a linear fit), so there is some merit to 

the notion that higher Polydispersity index can benefit device performance. This could be 

explained on the same morphological grounds as the trend in molecular weight: highly 

polydisperse samples would contain many chains long enough to connect multiple 

crystalline grains. Given the difficulty of controlling molecular weight distribution 

accurately, it is all the more important that it be presented in as quantitative a manner as 

possible, because it is highly unlikely that authors from different groups will attain the 

same distribution. 
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C.3.2 Mobility versus Channel Length 

 

Figure 70 – Mobility versus groups of channel lengths as reported for 206 devices in 
the literature. Boxes indicate 25th percentile, median, and 75th percentile. Markers are 
semi-transparent so that high data densities appear darker. 

 

Channel length is a widely investigated device fabrication parameter due to its 

direct relationship with transistor packing density and power efficiency in electronic 

applications. Wang et al. and Chang et al. investigated the impact of channel length on 

mobility and discovered that shorter channels generally have higher mobility.25,202 Chang 

associated this trend with a decrease in the number of grain boundaries as the length scale 

of the channel approaches that of the polymeric crystalline domains. However, 

contributions from increased contact resistance and deviation from the gradual channel 

approximation were ignored. Chabinyc et al. demonstrated that field effect transistors 
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below 10 µm in length experience high contact resistance and deviate from the ideal 

current-voltage relationships shown above.208 

Our database indicates that both of the above referenced analyses are correct. The 

box plot in Figure 70 shows mobility versus four groups of channel lengths: median device 

performance for short channel devices is approximately one order of magnitude higher than 

devices with channels between 10 and 100 µm, and two orders of magnitude higher than 

devices with channels 100 µm and longer. The devices with the highest reported mobilities 

in the database have channels of length 5 µm and use an unconventional architecture with 

platinum electrodes.86 Channel length will be revisited in a later section as we attempt to 

identify a standard device. 
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C.3.3 Mobility versus Deposition Method 

 

Figure 71 – Mobility versus solution deposition method for 204 devices in the 
literature: dip-coated, drop-cast, or spin-coated. Only devices with gold electrodes are 
considered in this search. Boxes indicate 25th percentile, median, and 75th percentile. 
Markers are semi-transparent so that high data densities appear darker. 

The three predominant methods of film deposition in studies of P3HT OFETs are 

dip-coating, drop-casting, or spin-coating, with spin-coating comprising the overwhelming 

majority of devices. This is probably due to its ability to create extraordinarily uniform thin 

films without concerns of dewetting or surface tension effects. However, as illustrated in 

Figure 71, the data indicate that spin-coating is not only the worst thin film deposition 

technique in terms of median, minimum and maximum mobility, but also the most variable. 

Surin, who conducted a study comprised of devices coated using all three of the above 

methods, postulated that for dip-coating and drop-casting, the evaporation of solvent is so 
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slow that films obtain a crystalline state closer to equilibrium than that of spin-coated 

films.28 Thus, a broader range of kinetically trapped morphologies can be obtained by spin-

coating. Aiyar, Chang and Choi each arrived at similar conclusions in studying solvent 

effects for spin-coated devices.80,81,89 

The spread of mobilities obtained from spin-coated devices occupies six decades 

of performance with a long tail of devices whose reported mobility descends as low as 10-

6 cm2 V-1 s-1. The variability induced by the spin-coating process is also reflected in the 

rather large error bars regularly encountered with mobilities averaged over multiple devices 

spin-coated from the same solution. Variability in thin film deposition is troubling given 

that structural characterization, other than scanning probe microscopy (UV-Vis, X-Ray 

diffraction and scattering), is sometimes carried out on films deposited on separate 

substrates from the devices used for mobility measurement. It is a slight relief that spin-

coating is unlikely to be used in an industrial process. As research moves to more relevant 

additive processing methods, device performance may also naturally increase. 
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C.3.4 Identifying a Standard Device Platform  

 

Figure 72 – Reported mobility of devices satisfying progressively tighter constraints. 
The constraint in each column stacks on all the previous constraints. Boxes indicate 
25th percentile, median, and 75th percentile. Markers are semi-transparent so that 
high data densities appear darker. 

Beyond what is presented above, global process-property trends are difficult to 

extract. A more fruitful endeavor may be to filter the database to isolate a standard device 

that is reported by many different authors, and examine what differences can be observed 

among that limited set. From an extensive perusal using our search functions, we have 

identified a set of processing conditions that appear relatively frequently: (1) Neat 

chloroform as a solvent, (2) spin-coated film, (3) bottom-gate, bottom-contact architecture 

(BGBC) with gold electrodes, (4) number average molecular weight > 20 kD, (5) no 
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annealing, and (6) no sonication, aging or other solution pre-treatment. Following the 

discussion in Section 3.2, we should also (7) ignore devices with channel lengths less than 

10 µm. Figure 72 illustrates how this progression of filters reduces our set down to five 

devices with a narrower range of mobilities, all from different authors.49,81,82,90,205 The full 

table of relevant processing conditions is reported for these devices in Table 7. 

Table 7 – Processing conditions for 5 devices conforming to the standard defined 
above. a Regioregularity. b Initial concentration of P3HT in solution. c 

Hexamethyldisilazane. 
Author/Year	 Aiyar	2011	 Bielecka	2011	 Chang	2013	 Park	2014	 Verilhac	2006	

Mn	(kD)	 24	 	 40.3	 24	 27	

Mw	(kD)	 47.7	 65.5	 91.481	 47.7	 60.75	

PDI	 1.9875	 	 2.27	 1.9875	 2.25	

R.R.a	(%)	 93	 96.6	 92	 92	 98	

Solvent	 CHCl3	 CHCl3	 CHCl3	 CHCl3	 CHCl3	

Init.	Conc.b	(mg/mL)	 4	 10	 5	 3	 2	

Substrate	Treatment	 	 	 	 	 HMDSc	

Deposition	Method	 Spin-coated	 Spin-coated	 Spin-coated	 Spin-coated	 Spin-coated	

Spin	Rate	(rpm)	 1500	 900	 1500	 2000	 300	

Spin	Time	(s)	 	 	 60	 60	 30	

Processing	Environment	 Air	 Air	 Air	 N2	 Air	

Mobility	Environment	 Air	 Vacuum	 N2	 Vacuum	 N2	

Mobility	Regime	 Linear	 Saturation	 Saturation	 Linear	 Saturation	

Electrode	Configuration	 BGBC	 BGBC	 BGBC	 BGBC	 BGBC	

Electrode	Material	 Au	 Au	 Au	 Au	 Au	

Channel	Length	(µm)	 50	 10	 50	 200	 20	

Channel	Width	(mm)	 2	 10	 2	 0.5	 9	

Mobility	(cm2/Vs)	 0.000202	 0.00073	 0.00423	 0.0038	 0.0229	

 
The devices in Table 7 are presented in order of increasing mobility. Even for this 

tightly defined set of conditions, reported mobility spans two orders of magnitude. Subtle 

differences in the preparation and characterization of these devices can help elucidate the 

remaining sources of variance. The devices from Aiyar and Park are a particularly 
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instructive case: both are prepared from P3HT purchased from Sigma-Aldrich, with similar 

molecular weights.90,205 The only major difference is in their channel length (50 vs. 200 

µm) and their mobility characterization environment (air vs. vacuum). Since the difference 

in channel length would suggest that Park’s mobility be lower, it is the difference in 

characterization environment that apparently makes the largest difference, affecting an 

improvement of over an order of magnitude. The highest performing device of the set – 

that of Verilhac et al. – has two unique features: an HMDS-treated substrate and a 

remarkably low spin rate (300 rpm). Surface modification has been used in multiple studies 

to induce favorable edge-on crystalline orientation and reduce energetic traps at the 

dielectric interface.209,210 Following the discussion in Section 3.3, a low spin rate may also 

reduce the solvent evaporation rate, allowing more time for crystallization during 

deposition. 
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C.4. Commentary on Materials Processing Databases 

Perhaps what is most remarkable about this dataset is that there are no two devices 

fabricated at the exact same conditions, yet the information needed to explain discrepancies 

between the closest devices is available and validates much of what has been learned up to 

this point. The ability to quickly explore and compare devices across this large set of data 

could yield useful information to many interested parties, which is why we have made it 

publicly accessible [http://www.github.com/Imperssonator/OFET-Database]. We have 

validated existing theories about the effects of molecular weight distribution, channel 

length, and deposition method, as well as identified a standard device that highlights the 

large discrepancies in performance measurement that still must be overcome. This was 

accomplished using only published process-property data – to say nothing of the even 

greater opportunity afforded by cataloging structure-property data. 

While a database such as this is probably not a rigorous tool for knowledge 

extraction, it can be very helpful in hypothesis generation and experimental design. The 

main challenge with analysis using the database is that of imputation: the method used to 

fill in missing information. Machine learning and data mining methods surely exist for 

tackling this problem, either by automatically modeling missing information, or by 

automatically soliciting missing information from authors. Above all, a database-driven 

approach to experimental research must be flexible and able to rapidly adapt to the 

information that researchers provide and seek out. With the adoption of cutting-edge tools 

from the field of data science, experimental research, analysis and reproducibility will 

flourish as publishing enters a new age of accessible, interactive data.   
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